

HAZARD FACTORS OF ACL RUPTURE:

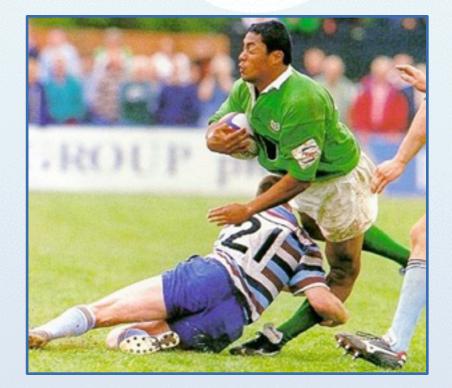
NEUROMUSCULAR FACTORS

KAUX JF, Delvaux F, Forthomme B, Massart N, Daniel C, Crielaard JM, Croisier JL

Sports Medicine and Traumatology Department (SPORTS²)

University Hopital of Liège (Belgium)

Dr KAUX Jean-François


Sports Medicine and Traumatology Department (SPORTS²) University Hospital of Liège (Belgium)

The author had no conflict of interest concerning the data of the communication

Introduction

- ACL rupture ↔ intrinsic and
 extrinsic factors (Alentorn-Geli 2009, Smith 2012)
- Comprehensive approach

 Neuromuscular factors: unconscious activation of dynamic reflex → compensatory biomechanical action (Olsen 2004)

Introduction

٦		
		Risk factors
	Proprioception	 Reduction in flexion of the knee and hip during high-risk activities Increase in the internal rotation of the hip, abduction of the hip, external rotation of the tibia and abduction/ adduction moment of the knee during high-risk activities Increase in trunk displacement
	Muscular control	 Reduction in the force of the quadriceps and hamstrings Increase in the muscular activity of the quadriceps and reduction in hamstring activity during athletic maneuvers Weakness of hip muscles Early muscular fatigue
	Stiffness of the knee	 Reduction of passive and active stiffness of the knee

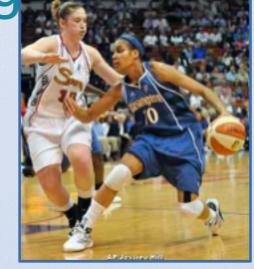
 Proprioception = capacity of the body to maintain and/or recover a defined body position after disturbance (Alentorn-Geli 2009, Smith 2012)

- Video analysis
- women: landing from jump
 - with knee valgus

- and lateral movement of trunk (Hewett 2009)
- Biomechanical observations
- ACL rupture: forced valgus and tibial rotation, knee locked in extension (Ferretti 1992, Olsen 2004)

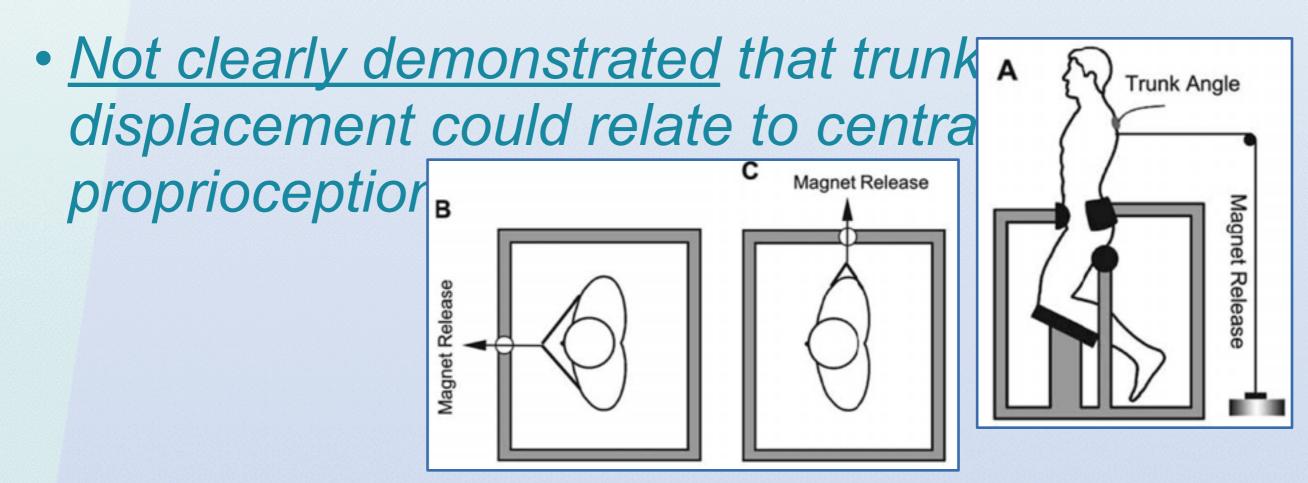
- Influence of sexual dimorphism increased risk of ACL rupture (x4.5) (Griffin 2005, Shultz 2010)
- Relationship still remain vague
- Jump and pivot actions in women: increase internal rotation of the hip with decrease of external rotation of the tibia and increased activation of the quadriceps (Griffin 2005, Hewett 2010)

→ increase risk of ACL injury

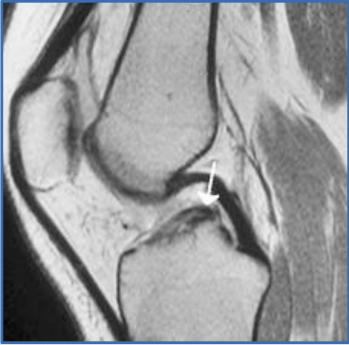


8

- The neuromuscular risk of ACL injury depends on the practised sport (Munro 2012)
 - –female <u>basketballers</u> increased risk of ACL injury compared to female *footballers*
 - -increase in the angle of front



- Central proprioception analysed by trunk displacement after a sudden force release (Zazulak 2007)
- Greater trunk displacement → increased risk of ACL rupture



- After an ACL reconstruction →
 biomechanical anomalies persist despite a return to high-level performance (Hewett 2013)
- Strongly associated with a second ACL rupture
- Neuromuscular risk factors residual and exacerbed by the initial injury

- <u>3D analysis</u> of a vertical jump and postural stability before return to pivot sports after ACL reconstruction (Paterno 2010)
 - 13% second ACL rupture
 - hip and knee control deficit
 during landing and lack of
 postural stability

→ interest of prevention programs into physical preparation and training for the different sports (Paszkewics 2012, Voskanian 2013)

- Lack of dynamic muscular control → increase knee valgus and higher constrains on the knee and ACL (Ladenhauf 2013)
- Vigorous contraction of the quadriceps can induce a ACL rupture (DeMorat 2004)
- Imbalances of muscular force → ACL injury risk or injury recurrence factor (Croisier 2008)

- Hamstring muscles play important role in the maintenance of knee stability and protection for the ACL during anterior tibial translation (Kirkley 2001, Ramesh 2005)
- Hamstring muscules activated by the ACL receptors (Solomonow 1987)

- Isokinetic assessment → higher frequency of reduced hamstring/quadriceps ratios for the healthy controlateral knee (Croisier 2008)
- Reduced hamstring/quadriceps ratio + increased knee abduction in footballers → suffered later of an ACL rupture (Soderman 2001, Ebben 2010, Hewett 2006)
- Link between pre-existing weakness of the hamstrings and ACL injury

- Protocol of <u>muscle fatigue</u> alters both the latency and the extent of the reflex response of hamstring muscles → potential repercussions for tibial translation in WOMEN (Soderman 2001, Behrens 2013)
- Muscular fatigue of the hamstrings and a weak of hamstring/quadriceps ratio → could increase the instabillity of the knee

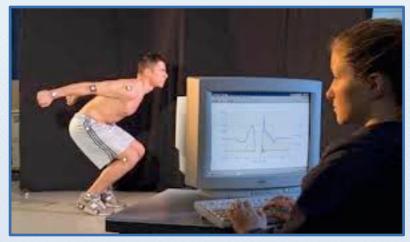
→ Interest of isokinetic evaluation and specific reeducation/strengthening programs

Knee laxity

- <u>Women</u>: reduced muscular and capsuloligamentous stiffness → increased risk of ACL rupture (Alentorn-Geli 2009)
- Women show less stiffness of the knee in response to weak varus/valgus force and internal/external torsion (Schmitz 2008)
- This stiffness tends to increase with the applied constrains (Schmitz 2008)

→ ACL injury risk during low energy activity in women

Assessment methods



Assessment methods

Biomechanical analyses in laboratories

–limiting possibility of targeting athletes with high risk of ACL injury (Myer 2010, Smith 2012)

- <u>Clinical assessment</u>
 - -validated in laboratory (Myer 2010)
 - -parameters
 - weight
 - Iength of the tibia
 - knee valgus
 - amplitude of knee flexion
 - isokinetic ratio between hamstring and quadriceps
 - -greater population

- Hypothetical neuromuscular factors (proprioceptive and muscular control, knee laxity) do not offer a complete understanding of this risk
- Prospective studies on bigger populations and for longer periods are needed
- Other potention neuromuscular risk factors could be demonstrated
- Multiple risk factors could act in combination to cause ACL rupture
- These factors could be specific to certain groups: young women, depending on the sport practiced...
- Identification subjects at risk by functional analysis
- Preventive protocols

25

Thank you for your attention...

jfkaux@chu.ulg.ac.be

Link ORBI: http://hdl.handle.net/2268/155461

