NOVARTIS ROUND TABLE ON MOLECULAR MONITORING IN CML

THURSDAY FEBRUARY 4TH 2016

DR FRÉDÉRIC LAMBERT

UNITÉ DE GÉNÉTIQUE MOLÉCULAIRE HÉMATO-ONCOLOGIQUE

UNILAB LG / CHU DE LIÈGE

AGENDA OF THE MEETING

Introduction – Karen

• Evolution of the CML treatment, and the fact that deep molecular responses are becoming the goal of current treatments: what molecular monitoring is and its rational ?

Part 1: Molecular Monitoring in CML at Unilab Lg in practice

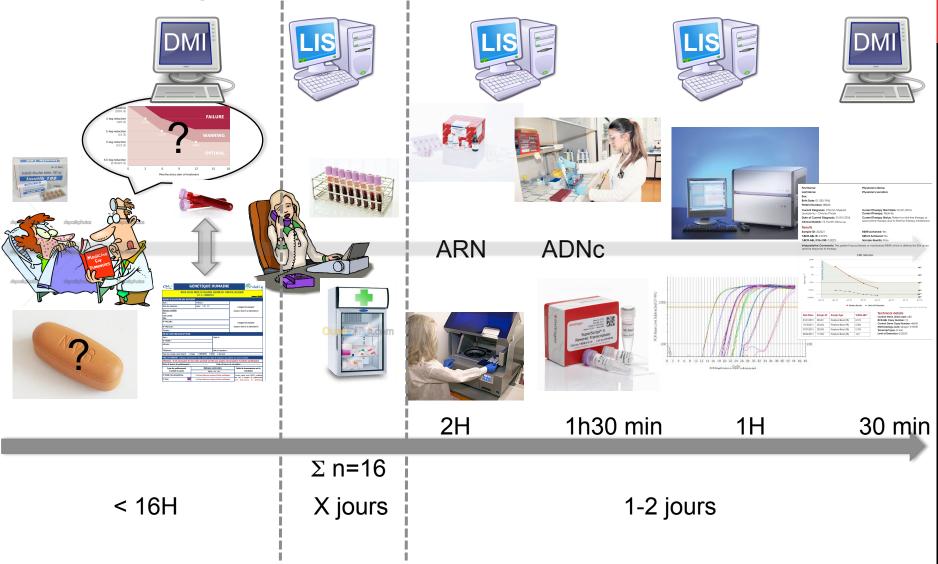
- 1. How is quantitative PCR monitoring of *BCR-ABL* mRNA performed ?
- 2. How is % IS *BCR-ABL* calculated and why the number of Housekeeping gene transcripts is so important ?
- **3.** Interactive discussion on the lab report(s)
- 4. Difference between accredited lab and standardized lab
- 5. Explanation of the Belgian Standardization Project

Part 2: Monitor the Milestones: clinical implications – Karen

• The importance and prognostic value of EMR, MMR, MR4.5 and why it's so important for the future if patients want to stop TKI therapy

1. HOW IS *BCR-ABL1* mRNA MOLECULAR MONITORING PERFORMED AT UNILAB LG *IN PRACTICE ?*

Temps de livraison (rêvé): 2 H


The journey from the consultation of the patient until the lab report

5 - 10 min.

Signalétique patient Diagnostic – thérapie Prélèvement – conditionnement (tube) Délais d'acheminement

The journey from the consultation of the patient until the lab report

Temps de livraison moyen (2015): 16,11j (médian; 14)

The journey from the consultation of the patient until the lab report

ramping

de Liège hilab La

Centre Hospitalier Universitaire de Liège Domaine Universitaire du Sart Tilman - B35 - 4000 LIEGE 1 www.chullege.be

Agréation Nº 8.62700.18.998 CENTRE DE GENETIQUE Agréation : 8.62990.19.996 art.33 & bis Génétique clinique - 04/366.71.24 Biochimie généfique - 04/366.76.95 - fax 04/366.84.74 Cvtppénétique - 04/366.25.61 - fax 04/366.29.74 Génétique moléculaire - 04/366.24.78 Biologie moléculaire hématologique - 04/366.25.61

16841574598 LHCV

1/3

Prescrit par DR DE PASQUAL AURELIE

mpression du: 01/02/2016 à 18:56 Réf du labo: 14-160119-0087

Votre Réf: 248518

Protocole DUPLICATA

Nom, prénom: WILK Né(e) le 29/03/1937 Sexe:Masculin Code Patient: 3469520E

Nº Traitement: 116015621F

BIOLOGIE MOLECULAIRE HEMATOLOGIQUE

Echantillon

Moelle

La prescription recue n'était pas cochée. Pourriez vous prendre contact rapidement avec notre secrétariat afin de nous communiquer les analyses à réaliser. Merci

C.H PELTZER - LA TOURELLE Laboratoire d'Analyses Médicale

VERVIERS - BELGIQUE

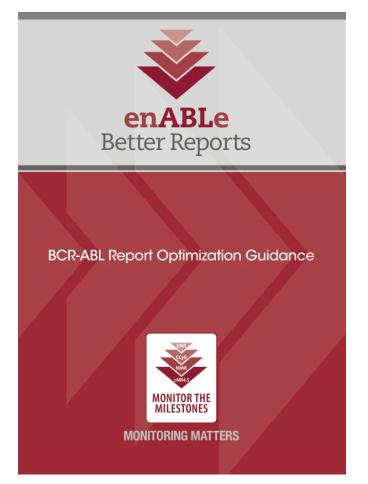
Date du prélèvement: 19/01/2016 10:40

Date de réception: 19/01/2016 15:55

Date de validation: 28/01/2016 10:27

rue du Parc 29

4800


Renseignements cliniques

LMC Progression suspectée. Premier prélèvement reçu le 02/11/2012.

Sealed 20 µl sample capillary with superior surface-to-volume ratio Heating coil Carousel with capacity for 32 samples Stepper motor to position luorimeter Thermal chamber Stepper motor to position samples Fan over optics Filters Photohybrids Maintenance-free LED light source Microvolume fluorimeter with Rodenstock quality optics

PCR quantitative *BCR-ABL1*: quels renseignements cliniques transmettre au labo ?

Ceux qui sont indispensables à l'interprétation et la représentation graphique optimales des résultats quantifiés sur l'échelle internationale (I.S scale)

GUIDANCE ON THE DATA FIELDS THAT SHOULD BE INCLUDED IN THE CLINICAL REPORT

Report Field	Implementation Guidance
Current Diagnosis	This field gives clinical context to the result and can be one of three options; 1. CML Chronic Phase 2. CML Accelerated Phase 3. CML Blast Phase
	Importantly, only a diagnosis of CML with a p210 transcripts can be reported on the IS.
Date of Current	This field allows key milestones to be observed. + TKI initiation
Diagnosis	This field is commonly excluded from clinical reports.
Clinical Details	This is the patient's clinical details as provided on the test request form by the referring physician giving clinical information to the laboratory to aid in the interpretation of the result. Example: <i>Patient not tolerating therapy. Query: progression?</i>
	This field is commonly excluded from clinical reports.
Current Therapy Start Date	This vital piece of information is very often not included in clinical reports. Without this information interpretation of the ELN recommendations cannot be achieved.
Current Therapy	This is the patient's therapy regime at the time this sample was taken. Options are: Imatinib Nilotinib Dasatinib Ponatinib Bosutinib Not currently using TKI therapy Other

GENETIQUE HUMAINE

hilab Lg.		hi	la\$	Lg.
-----------	--	----	------	-----

BIOLOG	IE MOLECULAIRE Dr. F. LAMBER		COLOG	IQUE	Version 2015/2
IDENTIFICATION DU PATI	ENT				
Nom :	Prénom :				
Date de naissance :	Sexe: 🗆 M 🗆 F			ETIQUETTE PAT	IENT
Adresse complète Rue : Code postal : Ville :			(espa	ace réservé au la	boratoire)
N° Mutuelle :				ETIQUETTE PAT	IENT
N° Matricule :			(esp	ace réservé au la	boratoire)
Titulaire :					
MEDECIN PRESCRIPTEUR					
Nom :	Copie à :				
N° INAMI :					
Adresse :					
Téléphone :		Date et signature :			
Type de compte-rendu désiré : 🗆 P	Papier 🗆 OMNIPRO 🗆 Mi	EXI 🗆 Autre(s) :			
PRELEVEMENT (indiquer clairer	ment le nom, prénom et da	te de naissance du pa	tient sur t	ous les tubes)	
Attention : il est nécessaire de r	ious faire parvenir un tu	be par analyse et/o	ou type(s)) d'acide(s) nu	cléique(s).
Date et heure de prélèvement :		Date et heure	de récept	tion :	
Type de prélèvement	Biologie n	noléculaire	D	élai de transm	
(cocher la case)	EDTA	/ 2°C - 8°C		borato	ire
Moëlle hématopoïétique	3 ml (un tube par ana	lyse/Acide nucléique		jour même avant	-
Sang E	3 ml (un tube par ana	lyse/Acide nucléique		16h à compter s laboratoires	
□ Suivi □ Rechute □ Prégreffe / Postgreffe □ Traitement par :	Date : J+	🛛 1ère ligne 🗆 2èm	e ligne		

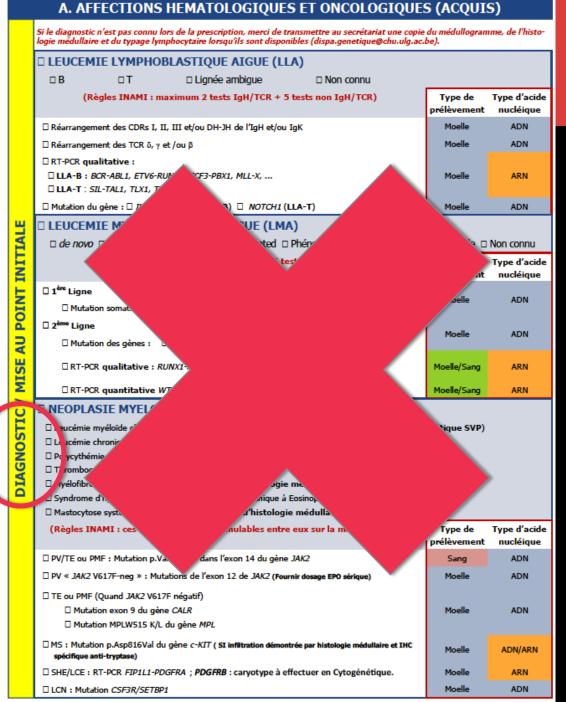
CONTACTS dispa.genetique@chu.ulg.ac.be

Biologie Moléculaire Hématologique Dr F.LAMBERT / Dr Sc. B.KOOPMANSCH / Secrétariat : 04/366.24.78

Oncogénétique Moléculaire 78 Dr Sc. K.SEGERS / Secrétariat : 04/366.24.78 Génétique clinique Dr V.BOURS / Dr S.GAILLEZ / Secrétariat : 04/366.71.24

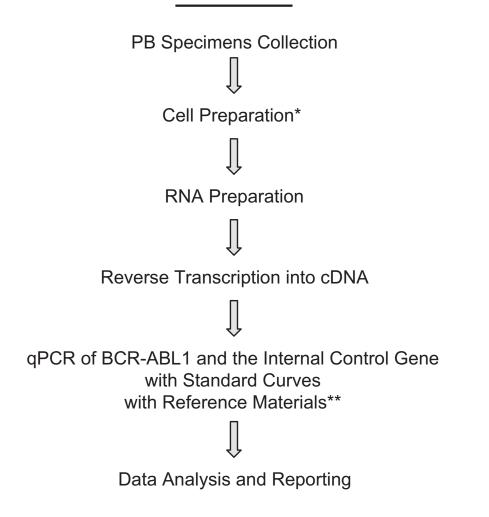
page 1

A. AFFECTIONS HEMATOLOGIQUES ET ONCOLOGIQUES (ACQUIS)


Ces analyses sont facturées selon l'Arrêté Royal du 07 juin 2007, dit "article 33bis", modifiant l'annexe à l'Arrêté Royal du 14 septembre 1984, établissant la nomenclature des prestations de santé en matière d'assurance soins de santé et indemnités. Si marqueur préalablement identifié au diagnostic : règle INAMI 33 bis : suivi de maximum 1 marqueur si "positif" au diagnostic, maximum 4x/année de suivi, ensuite à charge du patient moyennant consentement signé.

	Menu des analyses	Type de prélèvement	Type d'acide nucléique
į.	RT-PCR quantitative BCR-ABL1, t(9;22)(q34;q11) (Pas au diagnostic)	Sang	ARN
	RT-PCR quantitative WT1 (Si surexprimé au diagnostic)	Moelle/Sang	ARN
5	RT-PCR quantitative NPM1 (Effectué en sous-traitance)	Moelle/Sang	ARN
	RT-PCR quantitative ETV6-AML1 (RUNX1), t(12;21)(q13;q22)	Moelle/Sang	ARN
	RT-PCR quantitative E2A-PBX1, t(1;19)(q23;q13)	Moelle/Sang	ARN
	RT-PCR quantitative MLL-AF4, t(4;11)(q21;q23)	Moelle/Sang	ARN
	RT-PCR quantitative HOX11 (TLX1), HOX11L2 (TLX3), t(5;14)(q35;q32)	Moelle/Sang	ARN
	RT-PCR quantitative SIL-TAL1, t(1;14)(q32;q11)	Moelle/Sang	ARN
	RT-PCR quantitative PML-RARAs, t(15;17)	Moelle/Sang	ARN
-	RT-PCR quantitative MYH11CBFb, inv(16)(p13q23),t(16;16)(p13;q23)	Moelle/Sang	ARN
	RT-PCR quantitative MLL-AF4, t(4;11)(q21;q23)	Moelle/Sang	ARN
)	RT-PCR quantitative MLL-AP9, t(9;11)(q22;q23)	Moelle/Sang	ARN
	C RT-PCR qualitative FIP1L1-PDGFRA (del 4q12)	Moelle/Sang	ARN
	Réarrangement du locus CDR I, II, III, DH-JH des IgH et/ou Kappa de l'IgL	Moelle/Sang	ADN
	□ Réarrangement du locus TCR γ, β ou δ	Moelle/Sang	ADN
	PCR quantitative V617F de JAK2 (Non remboursé par l'INAMI)	Moelle/Sang	ADN
	Mutation de résistance aux TKI BCR-ABL1 si absence de MR3 (effectué en sous-traitance)	Moelle/Sang	ARN

LES DONNÉES CLINIQUES A PRÉSENTER DANS LE RAPPORT:


Report Field	Implementation Guidance
Current Diagnosis	 This field gives clinical context to the result and can be one of three options; 1. CML Chronic Phase 2. CML Accelerated Phase 3. CML Blast Phase Importantly, only a diagnosis of CML with a p210 transcripts can be reported on the IS.
Date of Current Diagnosis	This field allows key milestones to be observed. This field is commonly excluded from clinical reports.
Clinical Details	This is the patient's clinical details as provided on the test request form by the referring physician giving clinical information to the laboratory to aid in the interpretation of the result. Example: <i>Patient not tolerating therapy. Query: progression?</i>
	This field is commonly excluded from clinical reports.
Current Therapy Start Date	This vital piece of information is very often not included in clinical reports. Without this information interpretation of the ELN recommendations cannot be achieved.
Current Therapy	This is the patient's therapy regime at the time this sample was taken. Options are: • Imatinib • Nilotinib • Dasatinib • Ponatinib • Bosutinib • Not currently using TKI therapy • Other

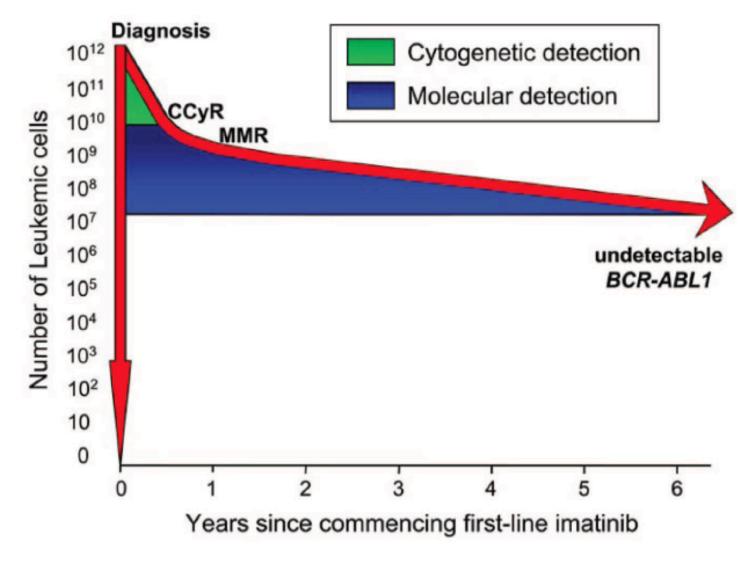
FLUX SCHÉMATIQUE DE L'ANALYSE *BCR-ABL1 PAR* RT-PCR QUANTITATIVE (qPCR)

RT-qPCR

ChaoJie Zhen, J Mol Diagn 2013, 15: 556e564; http://dx.doi.org/10.1016/j.jmoldx.2013.05.010

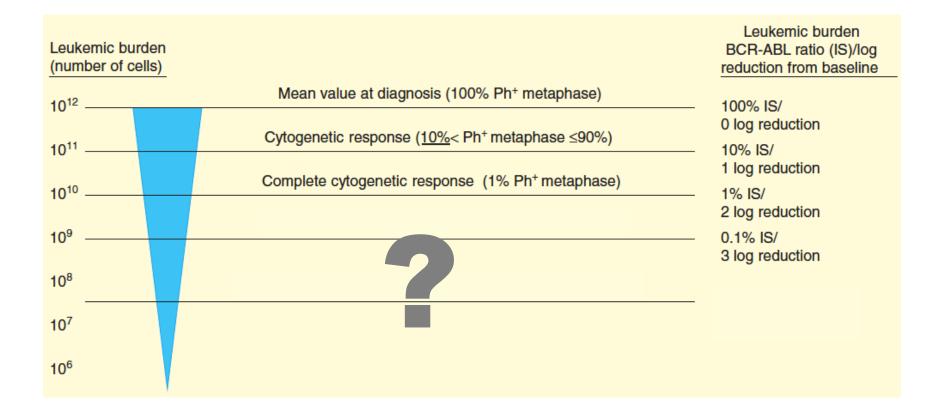
PCR quantitative *BCR-ABL1*: pour qui et quand ?

European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013

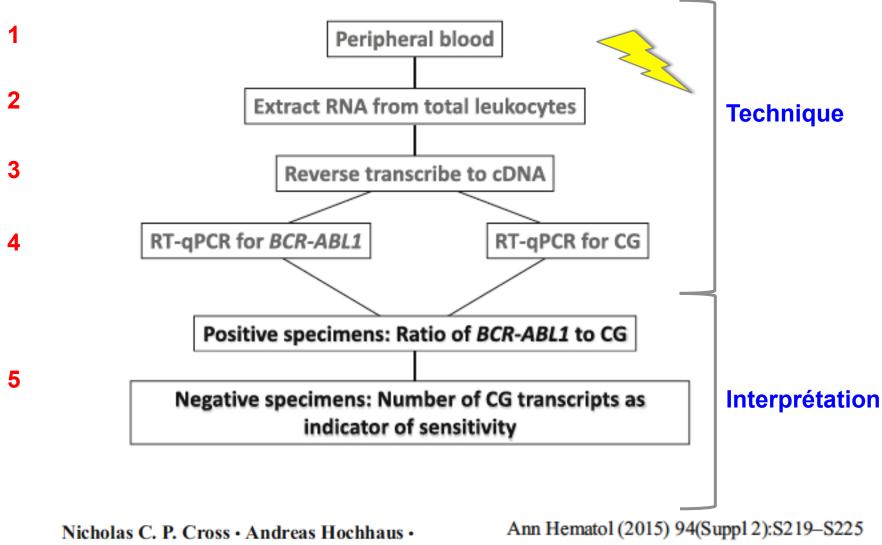

Michele Baccarani,¹ Michael W. Deininger,² Gianantonio Rosti,³ Andreas Hochhaus,⁴ Simona Soverini,³ Jane F. Apperley,⁵ Francisco Cervantes,⁶ Richard E. Clark,⁷ Jorge E. Cortes,⁸ François Guilhot,⁹ Henrik Hjorth-Hansen,¹⁰ Timothy P. Hughes,¹¹ Hagop M. Kantarjian,⁸ Dong-Wook Kim,¹² Richard A. Larson,¹³ Jeffrey H. Lipton,¹⁴ François-Xavier Mahon,¹⁵ Philippe Rousselot,²¹ Giuseppe Saglio,²² Susanne Saußele,¹⁷ Charles Schiffer,²³ Richard Silver,²⁴ Bengt Simonsson,²⁵ Giovanni Martinelli,³ Jiri Mayer,¹⁶ Martin C. Müller,¹⁷ Dietger Niederwieser,¹⁸ Fabrizio Pane,¹⁹ Jerald P. Radich,²⁰ Juan-Luis Steegmann,²⁶ John M. Goldman,²⁷ and Rüdiger Hehlmann¹⁷ BLOOD, 8 AUGUST 2013 • VOLUME 122, NUMBER 6
 Table 9. Recommendations for cytogenetic and molecular monitoring

At diagnosis	Chromosome banding analysis (CBA) of marrow cell metaphases
	FISH in case of Ph negativity to identify variant,
	cryptic translocations
	Qualitative PCR (identification of transcript type)
During treatment	Quantitative real-time PCR (RQ-PCR) for the
	determination of BCR-ABL1 transcripts level or
	the international scale, to be performed every
	3 months until an MMR (BCR-ABL \leq 0.1%, or
	MR ^{3.0}) has been achieved, then every 3 to
	6 months
	and/or
	CBA of marrow cell metaphases (at least 20
	banded metaphases), to be performed at 3, 6,
	and 12 months until a CCyR has been
	achieved, then every 12 months. Once a CCyF
	is achieved, FISH on blood cells can be done. I
	adequate molecular monitoring can be ensured
	cytogenetics can be spared.
Failure, progression	RQ-PCR, mutational analysis, and CBA of marrov
	cell metaphases. Immunophenotyping in BP.
Warning	Molecular and cytogenetic tests to be performed
	more frequently. CBA of marrow cell
	metaphases recommended in case of
	myelodysplasia or CCA/Ph- with chromosome
	7 involvement.

The responses can be assessed either with molecular tests alone or with cytogenetic tests alone, depending on the local laboratory facilities, but whenever possible, both cytogenetic and molecular tests are recommended until a CCyR and an MMR are achieved. Then RQ-PCR alone may be sufficient. Mutational analysis by conventional Sanger sequencing is recommended in case of progression, failure, and warning.⁵⁹ In case of failure, warning, and development of myelodysplastic features (unexpected leucopenia, thrombocytopenia, or anemia), CBA of marrow cell metaphases is recommended.


FISH, fluorescence in situ hybridization; CCA/Ph-,clonal chromosome abnormalities in Ph- cells.

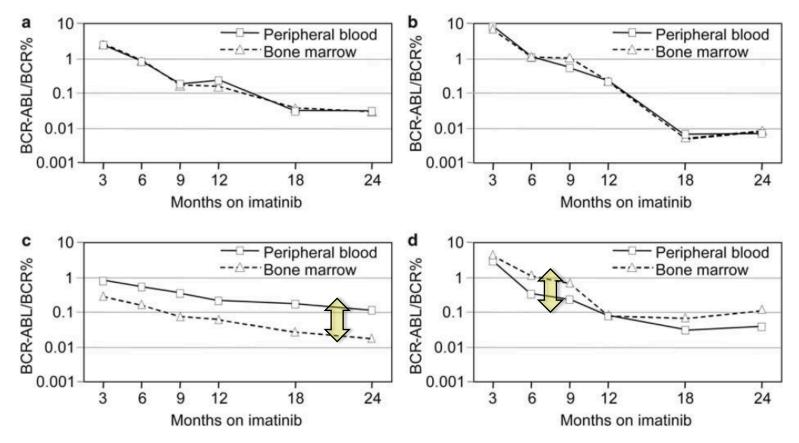
PCR quantitative *BCR-ABL1*: pour qui et quand ?


Susan Branford, Hematology 2012

PCR quantitative *BCR-ABL1*: pour qui et quand ?

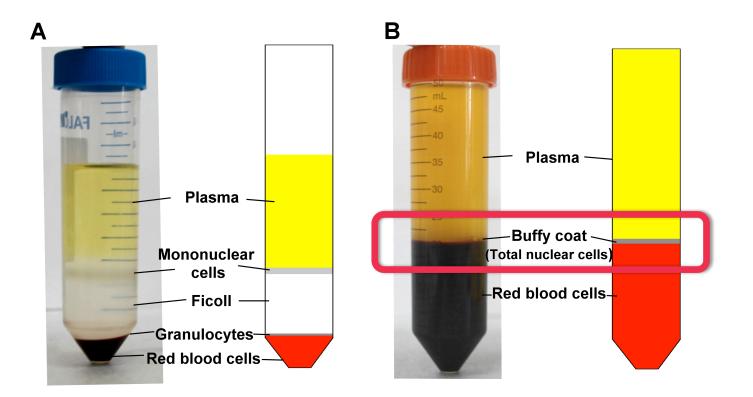
Adapted from Martin Luu and Richard D, Expert Rev. Mol. Diagn. 13(7), 749–762 (2013)

FLUX SCHÉMATIQUE DE L'ANALYSE *BCR-ABL1 PAR* RT-PCR QUANTITATIVE (qPCR)

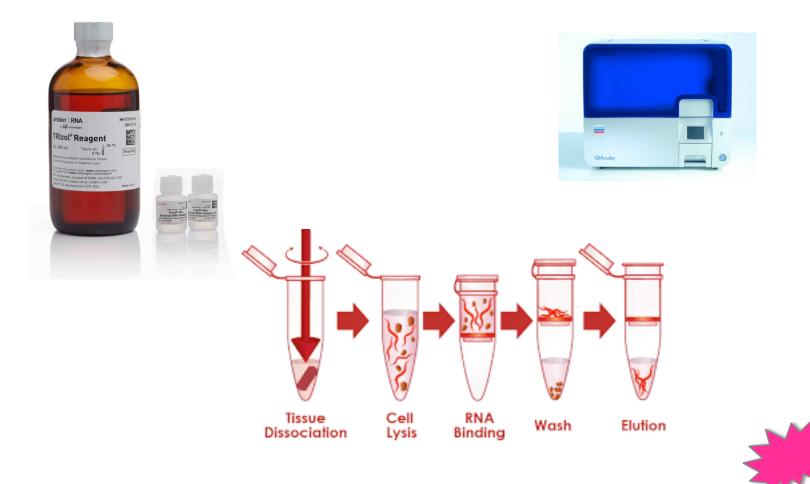


Martin C. Müller

DOI 10.1007/s00277-015-2315-1

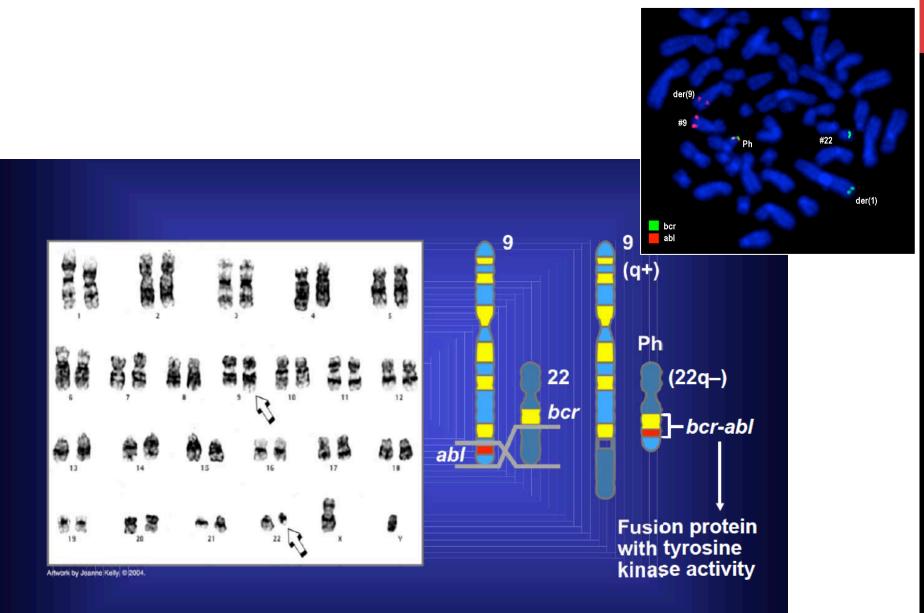

PCR quantitative *BCR-ABL1*: quel matériel utiliser pour le suivi quantitatif par PCR de *BCR-ABL1*, sang ou moelle ?

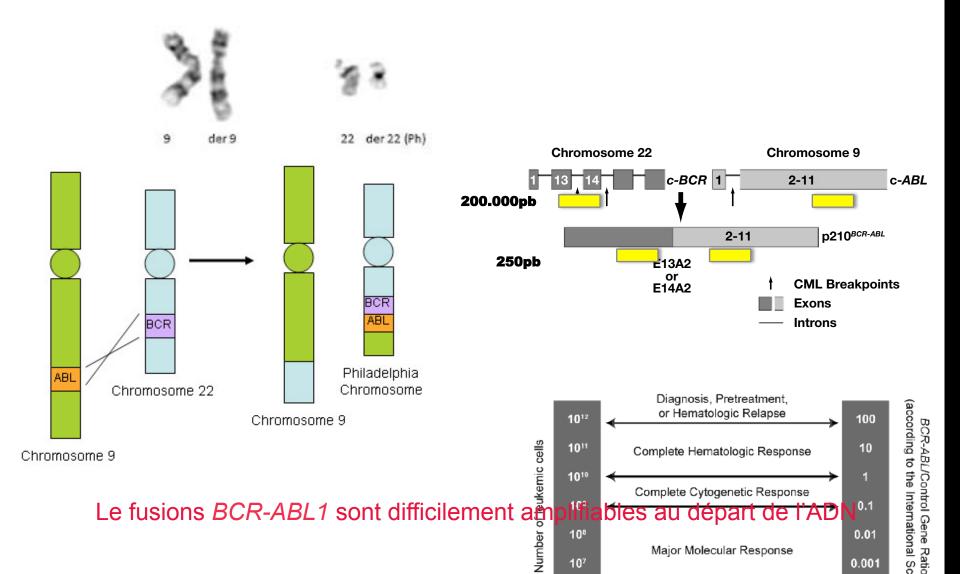
S Branford, Leukemia (2006) 20, 1925–1930


- Privilégier sang pour des raisons pratiques (accès, répétabilité prlvmt si confirmation du résultat requise);
- Ne pas comparer valeurs obtenues au départ de sang et moelle

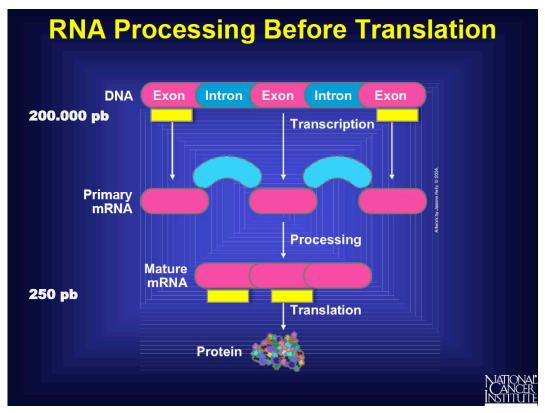
SÉPARATION DES FRACTIONS CELLULAIRES SANGUINES, UNE PREMIÈRE SOURCE DE VARIABILITÉ DES RÉSULTATS INTERLABORATOIRES....

Quelles fractions cellulaires garder, cellules mononuclées (PBMNC) versus <u>leucocytes totaux</u>?

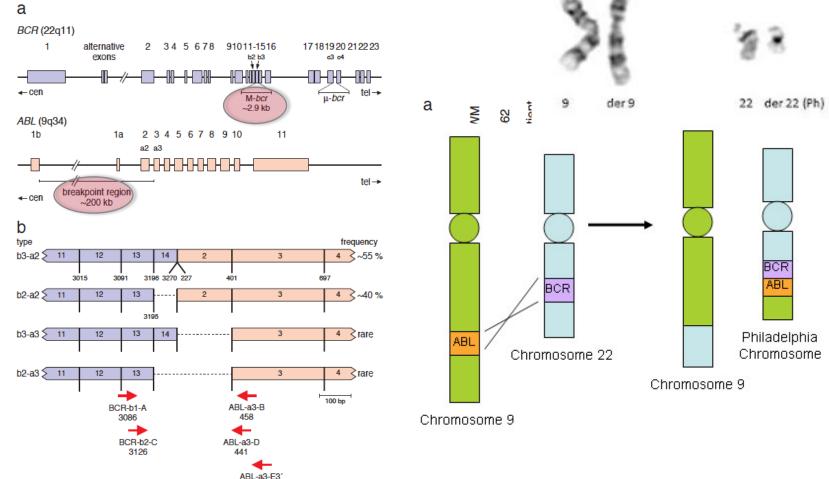

EXTRACTION D'ARN, UN MOMENT CRUCIAL POUR GARANTIR LA QUALITÉ DU RÉSULTAT


- Susceptibilité à la dégradation -> délais d'acheminement < 24 (16H)
- ARN total ou ARN messager

PCR quantitative *BCR-ABL1*: pourquoi utiliser l'ARN, un matériel délicat ?

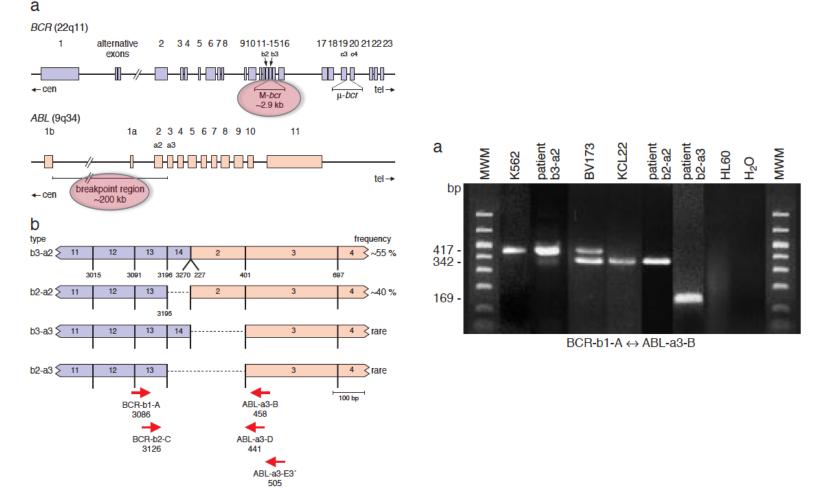

THE t(9;22)(q11; q34) IS THE HALLMARK OF CML, SO WHY WORKING ON RNA INSTEAD OF DNA ?

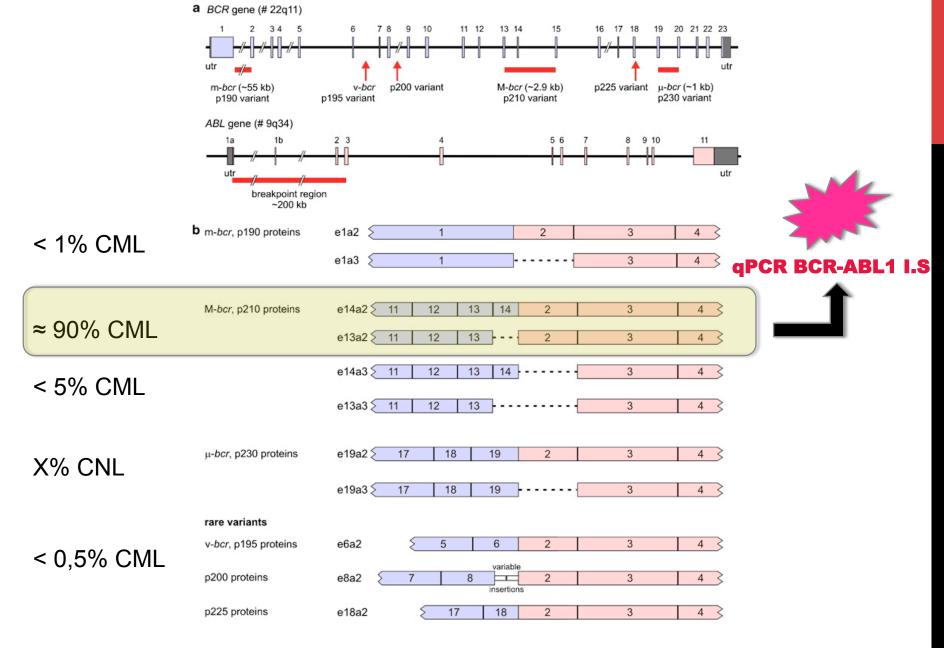
Pourquoi utiliser l'ARN, un matériel délicat ?: les points de cassures génomiques surviennent à des endroits distincts chez chaque patient


Transcription/Traduction (ADN->ARN->Protéine): Epissage des introns

Transcription/traduction DNA -> mRNA -> Protéine

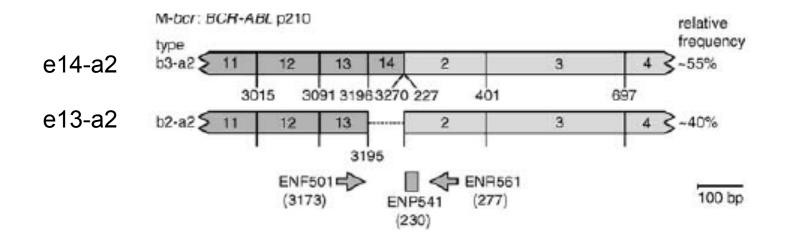
www.labmedicine.com, Fall Supplement 2012 | Lab Medicine e23




505

JJM van Dongen et al., Leukemia (1999) 13, 1901–1928

Pourquoi utiliser l'ARN, un matériel délicat ?: les points de cassures génomiques surviennent à des endroits distincts, générant des gènes de fusions spécifiques à chaque patient


JJM van Dongen et al., Leukemia (1999) 13, 1901–1928

LES VARIANTS (TRÈS) RARES NE PEUVENT ÊTRE SUIVI PAR RT-qPCR

Foroni L., Am. J. Hematol. 84:517–522, 2009.

PCR quantitative *BCR-ABL1*: les sondes/amorces utilisées dans la PCR dictent la sensibilité clinique du test

Sensibilité diagnostique (faux négatifs)

e14/e13-a2 = > 90%CML

Gabert et al., Leukemia (2003) 17, 2318–2357

CERTAINS TRANSCRITS E13A2 VARIANTS NE PEUVENT ÊTRE SUIVI PAR RT-qPCR

				2		Σ	_)<	>/										
V	Vild-T	ype	BC	Rex	on13	(b2)		Ab	l exo	n2 (a	2)	Abl	exon	3 (a3	3)			
		#1	B	CR (b	o2sho	ort)		Ab	l exo	n 2 (a	12)	Abl	exon	3 (a3	3)			
						_												
		#2	BCF	R (b2	short))		Ab	lexor	n <mark>2 (</mark> a	2)	Abl	exon	3 (a3	3)			
		#3	BC	R (b	2shor	t)		Ab	l exo	n 2 (a	a2)	Abl	exon	3 (a3	3)			
	v	К	\mathbf{L}	Q	Т	v	Н	S	I	Р	\mathbf{L}	Ν	I	Ν	К	Е	Е	A
WT	GTG	AAA	CTC	CAG	ACT	GTC	CAC	AGC	ATT	CCG	CTG	AAC	ATC	AAT	AAG	GAA		
#1	V GTG	K AAA	L CTC	Q CAG	T ACT	V GTC	H CAC	S AGC	I ATT	A							K AA	A GCC
π-	V	N	Y	D	V	G	Н	K	C	<u></u>	Q					Е	E	A
#2	GTG	AAC	TAT	GAT	GTT	GGG	CAC	AAG	TGC	CAG	CAG					GAA	GAA	GCC
	v	К	L	Q	Т	Р	L	S	L	Y	_					_	К	A
#3	CTC	ΔΔΔ	CTC	CAG	ACG	CCT	TTG	TCG	TTA	TAC	A						ΔΔ	GCC

Rational use of the EAC real-time quantitative PCR protocol in chronic myelogenous leukemia: report of three false-negative cases at diagnosis

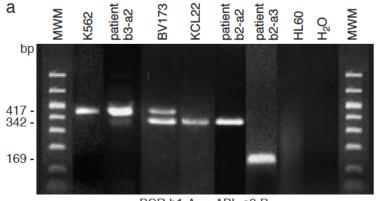
Leukemia (2006) **20**, 886–888. doi:10.1038/sj.leu.2404174; published online 9 March 2006

chier Édition Affichage Historique Marque-pages Outils Fenêtre Aide	\$\$ <> € + ·	🤶 🜓 🚺 100 % 🕼 Mar. 16:57 Frédéric
RNA extr G red blood 🗰 httpstion G BCR-ABL W ISO 1518 🥶 Site CHU Eff European 🛈 Leukemia G Hughes T SD Molecular SD Which m O	de vie - Re 🛛 🛃 ViaMichel	S Impac × 🔘 Blood Jo G capture d >
lm.nih.gov/pubmed/26729897	🖾 🛛 🤇 Rechercher	☆自♥↓ 余
🗋 Actualité 🛪 🧰 Banques 🛪 🛄 BIO INFORMATI 🛪 🧰 Bourse 🛪 🛅 courriers électro 🛪 🛅 Divers 🔻 🔯 Les plus visités 🛪 🚺 Météo 🛪 📄 Moteurs de rech 🛪 📄 NON TRAVAIL 🛪	🚞 TRAVAIL 🔻 😫 Home - PubMed 🔤 Google	e Traduction 📋 Save to Mendeley 🔝 Pages récemme
S NCBI Resources 🗹 How To 🕑		Sign in to NCBI
LIS National Library of Medicine	Search	
Advanced		Help
Abstract -	Send to: -	
	Full text links	
Blood. 2016 Jan 4. pii: blood-2015-10-674242. [Epub ahead of print]	Full Text	
Impact of BCR-ABL transcript type on response and survival in patients with chronic phase chronic mye	eloid Blood	
leukemia treated with tyrosine kinase inhibitors.		
Jain P ¹ , Kantarijan H ¹ , Patel KP ² , Nogueras Gonzalez G ³ , Luthra R ² , Kanagal Shamanna R ² , Sasaki K ¹ , Jabbour E ¹ , Guillermo Romo C ¹ , Kadia TM Pemmaraju N ¹ , Daver N ¹ , Borthakur G ¹ , Estrov Z ¹ , Ravandi F ¹ , O'Brien S ¹ , Cortes J ⁴ .		
Author information	Add to Favorites	-
Abstract The most common BCR-ABL transcripts in chronic myeloid leukemia (CML) are e13a2 (b2a2) or e14a2 (b3a2). The impact of the type of t	transcript on Similar articles	
response and survival after initial treatment with different tyrosine kinase inhibitors (TKI) is unknown. This study involved 481 patients with		
phase CML expressing various BCR-ABL transcripts. Two hundred patients expressed e13a2 (42%), 196 (41%) e14a2 and 85 (18%) both	on on on yoloid loaker	n tre [Haematologica. 2009]
The proportion of patients with e13a2, e14a2 and both achieving CCyR at 3 and 6 months was 59%, 67% and 63%, and 73%, 81% and 8%	Assessment or respons	se to imatinib therapy in
respectively, while MMR rates were 27%, 49% and 50% at 3 months, 42%, 67% and 70% at 6 months, and 55%, 83% and 76% at 12 mor respectively. Median (IS) levels of transcripts e13a2, e14a2 and both at 3 months were 0.2004, 0.056 and 0.0612, and at 6 months 0.091,	Datients with TFTODIAG	adiac Med Radiobiol. 2015]
0.0130, respectively. In multivariate analysis (MVA), e14a2 and both predicted for optimal responses at 3, 6 and 12 months. The type of tra	Distinct characteristics	of e13a2 versus e14a2
predicted for improved probability of event-free (p=0.043; e14a2) and transformation-free survival (p=0.04 for both). Patients with e14a2 (v	whether	nic [Haematologica. 2014]
alone or concomitant with e13a2 achieved earlier and deeper responses compared to those with only e13a2 transcripts and predicted for responses at 3, 6 and at 12 months and longer event free and transformation free survival.		J Med Paediatr Oncol. 2]
Copyright © 2016 American Society of Hematology.	Review Monitoring the	e Response to Tyrosine
Copyright © 2016 American Society of Hematology.		err J Hematol Infect Dis]
PMID: 26729897 [PubMed - as supplied by publisher]		See reviews
		See all
	*	
LinkOut - more resources	Related information	
	Articles frequently view	ved together
PubMed Commons PubMed Common	MedGen	

LES DIVERS TYPES DE VARIANTS BCR-ABL1 POURRAIENT ÊTRE ASSOCIÉS A UNE RÉPONSE ET UNE SURVIE DIFFÉRENTES SOUS TKI

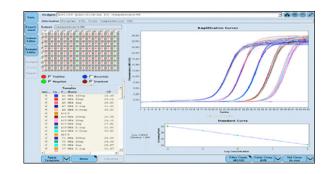
PCR quantitative *BCR-ABL1***:** des PCR quantitatives génomiques pourraient être utilisées ...à l'avenir

The Journal of Molecular Diagnostics, Vol. 17, No. 2, March 2015

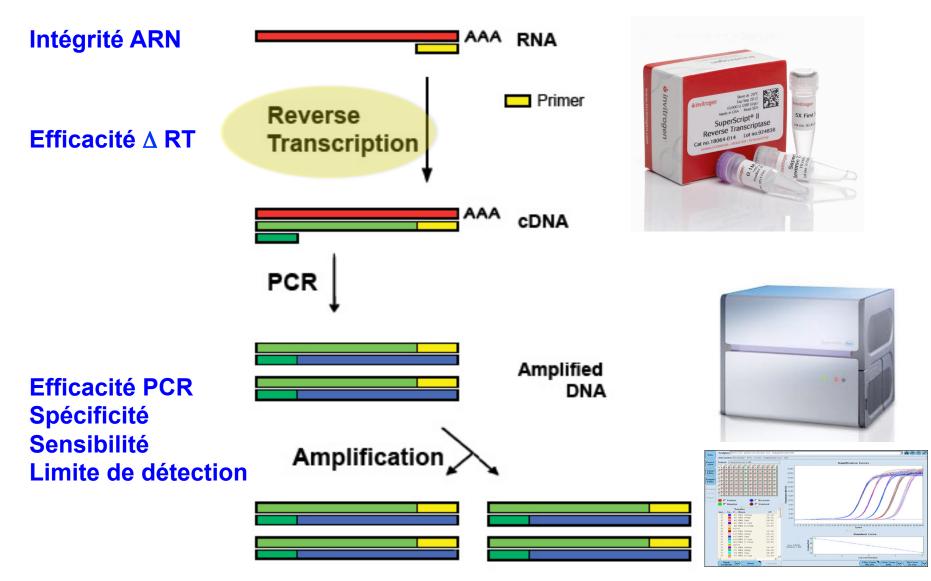

jmd.amjpathol.org

A DNA Real-Time Quantitative PCR Method Suitable for Routine Monitoring of Low Levels of Minimal Residual Disease in Chronic Myeloid Leukemia

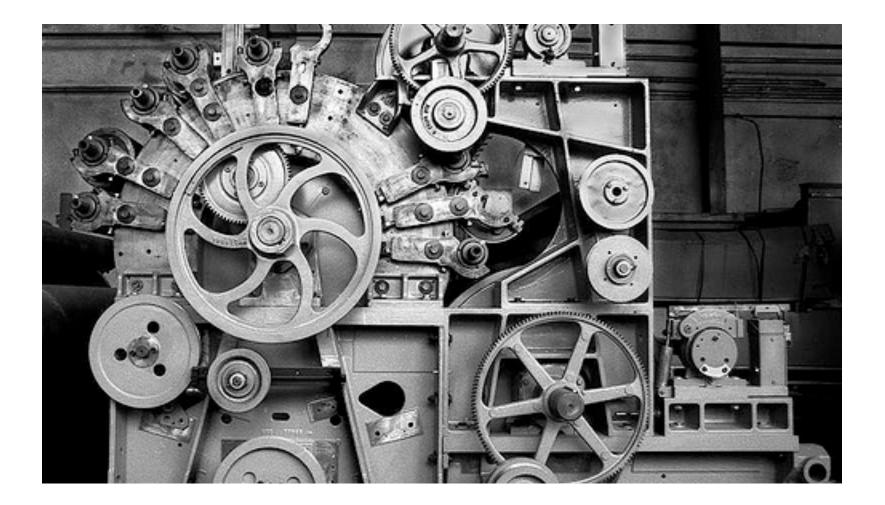
Paul A. Bartley,* Susan Latham,* Bradley Budgen,* David M. Ross,*[†] Elizabeth Hughes,* Susan Branford,[‡] Deborah White,[§] Timothy P. Hughes,[†] and Alexander A. Morley*[¶]


Quelles RT-PCR BCR-ABL1, pour quel usage ?

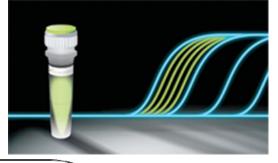
DIAGNOSTIC: RT-PCR QUALITATIVE

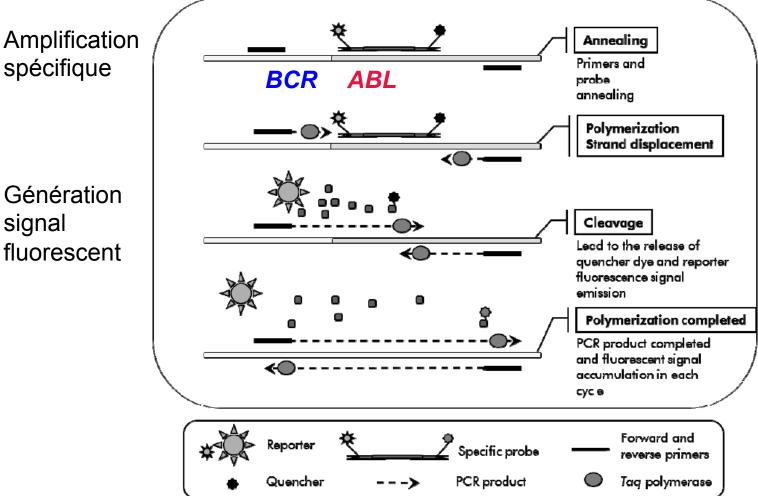

BCR-b1-A \leftrightarrow ABL-a3-B

SUIVI: RT-PCR QUANTITATIVE



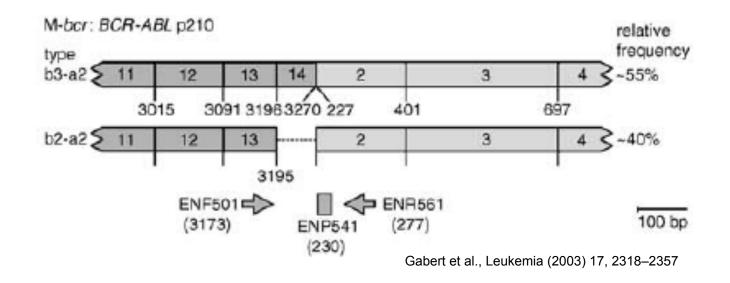
+ diagnostic si cinétique importante


PCR quantitative *BCR-ABL1*: transcription reverse (ARN->ADN complémentaire), une nouvelle source de variabilité

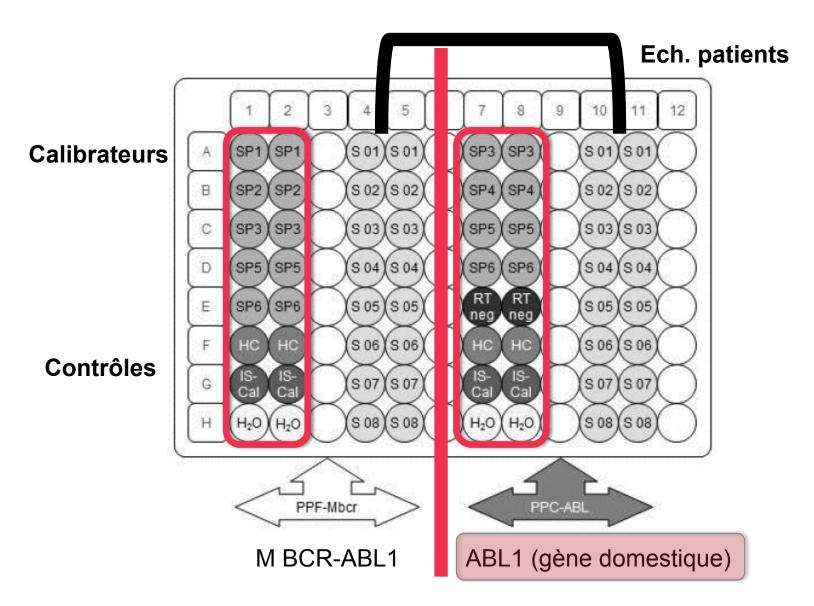


PCR QUANTITATIVE, COMMENT CELA FONCTIONNE (BRÈVE INTRODUCTION)?

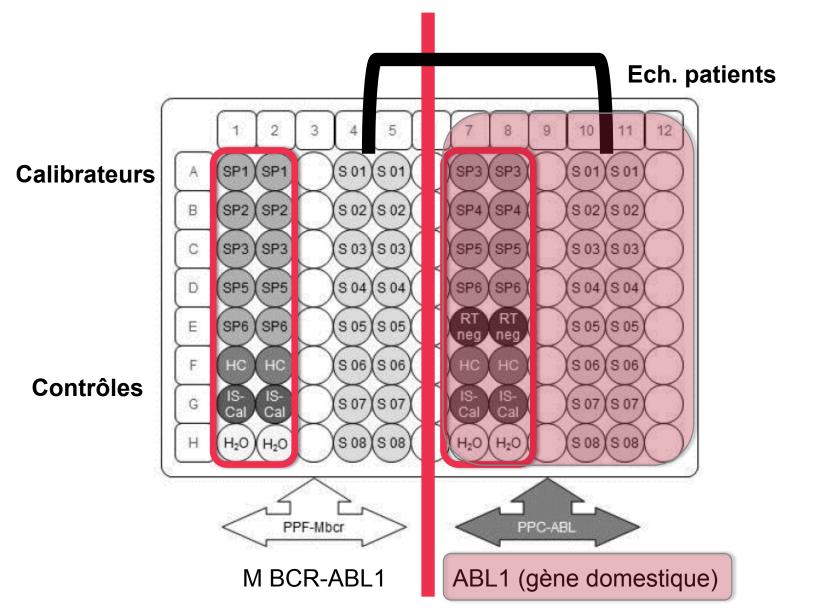
PRINCIPE DE BASE DE LA PCR QUANTITATIVE (qPCR)



Adapted from Manuel du kit ipsogen BCR-ABL1 Mbcr IS-MMR DX 01/2013 v1

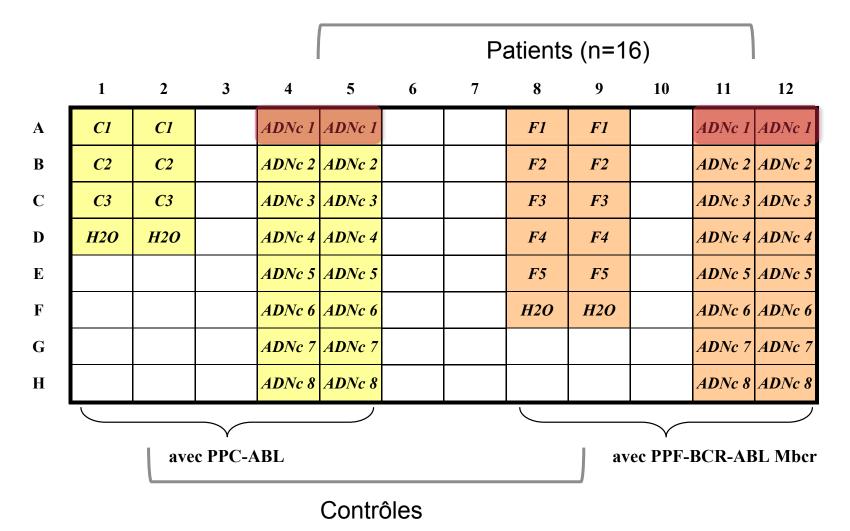

PCR quantitative *BCR-ABL1***:**

les sondes utilisées confèrent la spécificité, ne permettent de quantifier que e13/e14-a2/a3



- Spécificité: faible risque de faux positif
- Sensibilité: détection limitée aux formes e14/e13-a2a3

COMPOSITION D'UNE PLAQUE(SÉRIE) DE RT q-PCR



Constitution d'une plaque(série) de RT q-PCR

Adapted from Manuel du kit ipsogen BCR-ABL1 Mbcr IS-MMR DX 01/2013 v1

REMPLISSAGE D'UNE PLAQUE(SÉRIE) DE qPCR

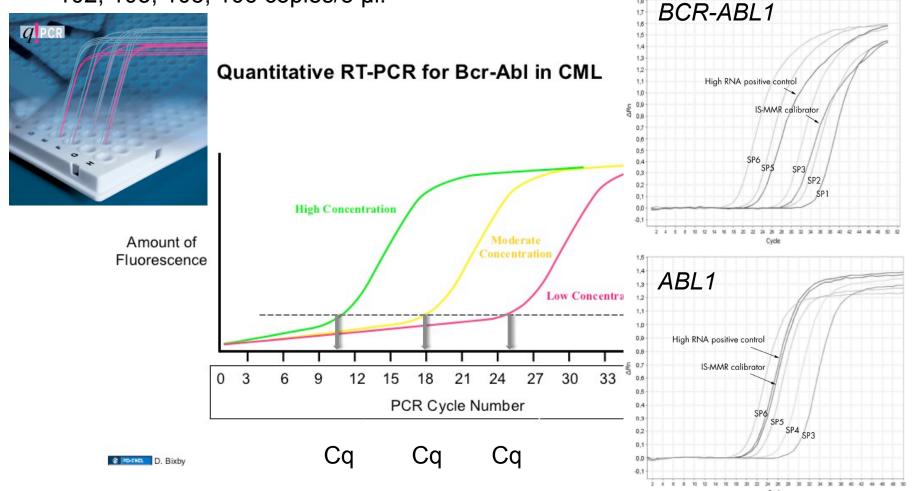
Adapted from Manuel du kit ipsogen BCR-ABL1 Mbcr IS-MMR DX 01/2013 v1

Composition d'une plaque 96 puits (série) de q-PCR BCR-ABL1

Plate Design

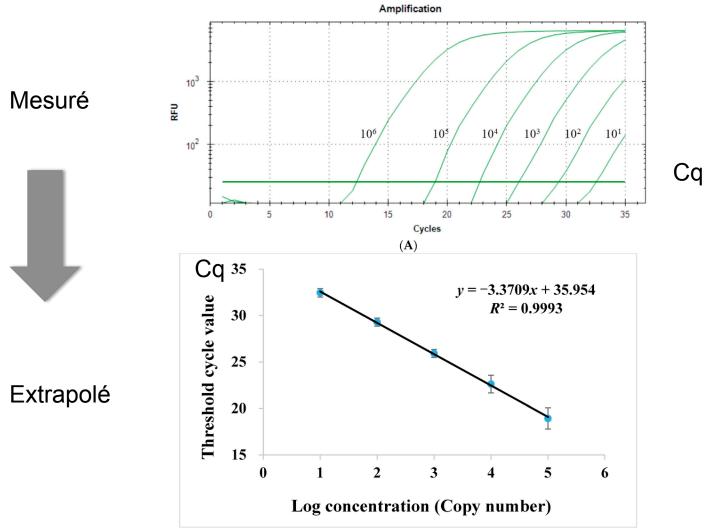
		1	2	3	4	5	6	7	8	9	10	11	12
ABL1	А	H2O ABL	H2O ABL	SP6 ABL	SP6 ABL	SP5 ABL	SP5 ABL	SP4 ABL	SP4 ABL	SP3 ABL	SP3 ABL	HC ABL	HC ABL
	В	ISCAL ABL	ISCAL ABL	RTNEG ABL	RTNEG ABL	130916-0 ABL							
	С	130916-0 ABL	130916-0 ABL	130917-0 ABL	130917-0 ABL	130919-0 ABL	130919-0 ABL	130920-0 ABL	130920-0 ABL	130923-0 ABL	130923-0 ABL	130923-0 ABL	130923-0 ABL
	D	130924-0 ABL	130925-0 ABL	130925-0 ABL	130926-0 ABL	130926-0 ABL							
BCR-ABL1	E	H2O Mbcr	H2O Mbcr	SP6 Mbcr	SP6 Mbcr	SP5 Mbcr	SP5 Mbcr	SP3 Mbcr	SP3 Mbcr	SP2 Mbcr	SP2 Mbcr	SP1 Mbcr	SP1 Mbcr
	F	HC Mbcr	HC Mbcr	ISCAL Mbcr	ISCAL Mbcr	130916-0 Mbcr							
	G	130916-0 Mbcr	130916-0 Mbcr	130917-0 Mbcr	130917-0 Mbcr	130919-0 Mbcr	130919-0 Mbcr	130920-0 Mbcr	130920-0 Mbcr	130923-0 Mbcr	130923-0 Mbcr	130923-0 Mbcr	130923-0 Mbcr
	н	130924-0 Mbcr	130925-0 Mbcr	130925-0 Mbcr	130926-0 Mbcr	130926-0 Mbcr							

- SP : Single Plasmid - IS-Cal : International Scale Calibrator - HC : High Control


- RT neg : Reverse Transcription Non Template Control - H2O : Water Control

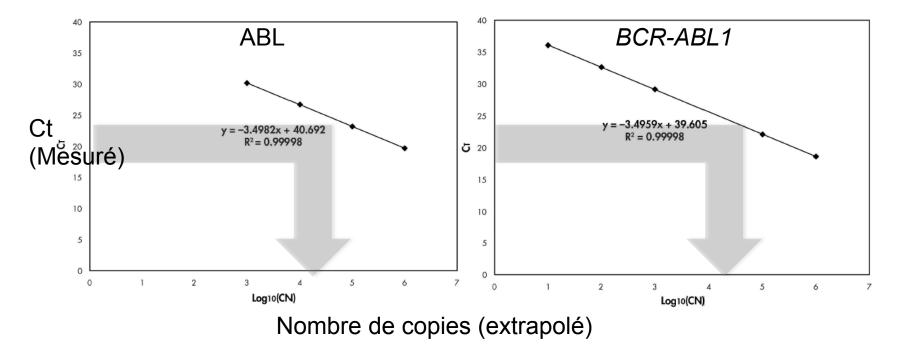
-> travail par série de 16 patients

Temps pour remplir 1 plaque = +:- 2 semaines


Principe d'analyse des données : mesure du signal fluorescent pour les standards calibrés (*BCR-ABL1* et *ABL1*)

Detection of BCR-ABL Mbcr with standards SP1, SP2, SP3, SP5, and SP6. 101, 102, 103, 105, 106 copies/5 µl.

Adapted from Manuel du kit ipsogen BCR-ABL1 Mbcr IS-MMR DX 01/2013 v1


Principe d'analyse des données : construction d'une droite de calibration pour *BCR-ABL1* et *ABL1*

Principe du calcul du nombre de copies : extrapolation construction de courbes de standards

Theoretical standard curve for ABL calculated from 4 standard dilutions

Theoretical standard curve for BCR-ABL calculated from 5 standard dilutions

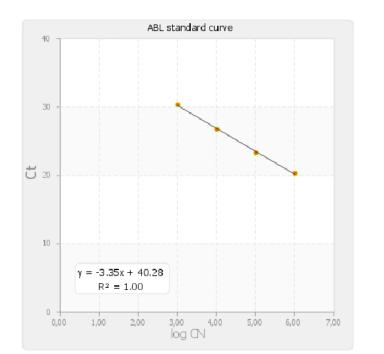
Détermination nombre de copies d'ABL1 et de BCR-ABL1 pour chaque échantillon

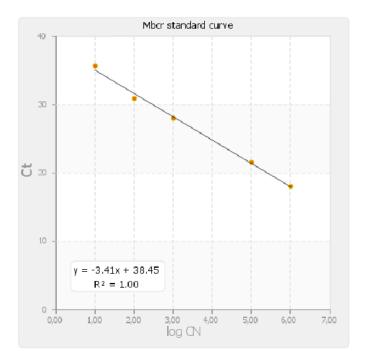
Adapted from Manuel du kit ipsogen BCR-ABL1 Mbcr IS-MMR DX 01/2013 v1

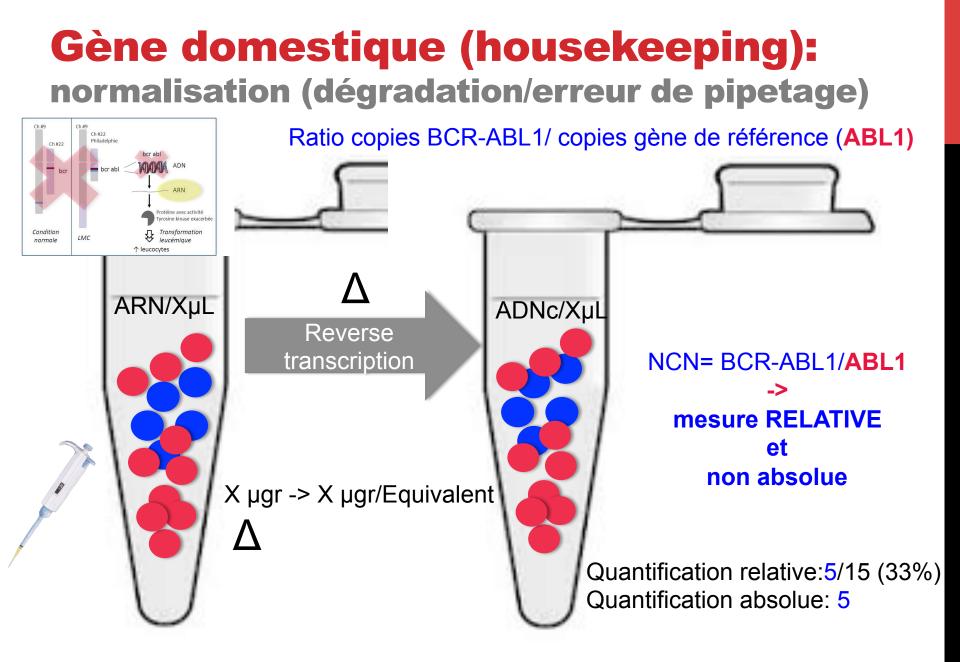
Principe d'analyse des données : la mesure du Ct permet le calcul du nombre de copies d'*ABL1* et *BCR-ABL1* pour chaque échantillon testé

	ABL Re	sults			Mbcr R	esults]												
Sample Name	Ct	Mean	Log	CN	Ct	Mean	Log	CN	NCN	IS-NCN	MMR**	Warnings	Lab Conclusion								
Sumple Hune		Ct	CN			Ct	CN			10 1101	status	Training 5	on MMR status								
130916-0135	24.78	24.80	4.61	61 4.105e+4		36.09	0.69	4.908	0.01196	0.01000	MMR										
130910-0135	24.83	24.00	4.01	4.105674	35.95	30.09	0.09	4.908	0.01196	0.01099	ппк										
130916-0168	23.44	32.49 5.0	23.48	F 01	3	1.019e+5 31.53	31.73	1.97	92.94	0.0912	0.08385	Inconclusive									
130910-0100	23.52	23.40	5.01	1.0196+5	31.94	51.75	1.57	32.34	0.0912	0.00305	Inconclusive										
												WRQ09: Warning: The NCN									
	23.04				Unde.							calculated for this sample is									
130916-0175		23.06	5.13	1.36e+5	1.36e+5	1.36e+5	1.36e+5	1.36e+5	1.36e+5	1.36e+5	1.36e+5	1.36e+5				0	0	0	MMR	under the reference limit of	
	23.08				Unde.							detection. BCR-ABL Mbcr is									
												detected but not quantified.									
120017 0002	24.29	24.26			29.20																
130917-0063	24.23	24.26	4.78	5.966e+4 28.95 29.07 2.75 5	560.2	0.9389 0.8632		0.8632 No MMR													

ABL

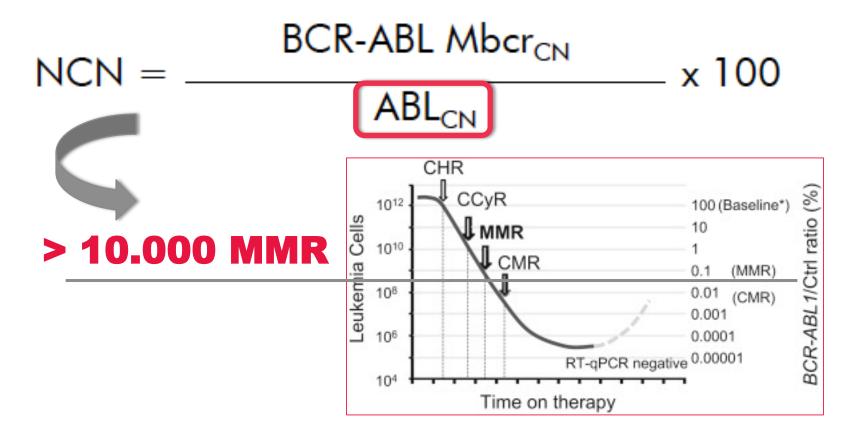

Name	Ct	Mean Ct	Log CN	Warnings
SP3	30.47	30,37	3,00	
	30.26			
SP4	26.72	26.74	4.00	
314	26.77	20174	1.00	
SP5	23.28	23.30	5.00	
SFS	23.32	23.30	5.00	
SP6	20.37	20,33	6.00	
5.0	20.29	20133		
H20	41.19			WRO13: Warning: A Ct value was detected for one of the replicates of H2O (water) controls for the ABL detector. Some reagents or
HZU	Undet.			samples may have been contaminated. The results interpretation can be wrong.
RT neg	Undet.			
RT neg	Undet.			

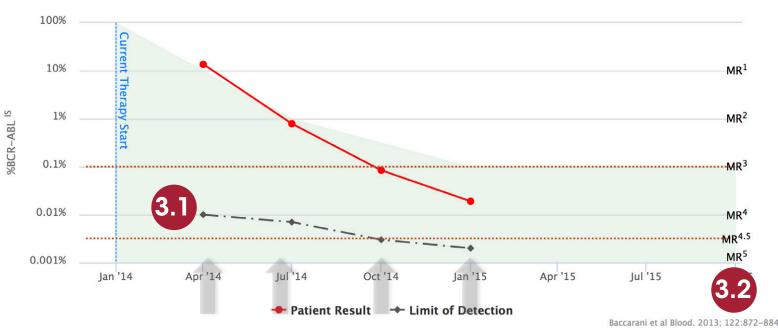

CR-	


DUK-AD	BCR-ABL					
Name	Ct	Mean Ct	Log CN	Warnings		
SP1	36.42	35.69	1.00			
SFI	34.95	55.05	1.00			
SP2	30.65	30.92	2.00			
3PZ	31.19	30.92	2.00			
SP3	28.17	28.02	3,00			
3F3	27.87	20.02	5.00			
SP5	21.52	21.57	5.00			
SFU	21.62	21.57	5.00			
SP6	18.17	18.07	6.00			
SFU	17.97	10.07	0.00			
H2O	33.26			WR016: Warning: A Ct value was detected for one of the replicate of H2O (water) controls for the Mbcr detector. Some reagents or		
112.5	Undet.			samples may have been contaminated. The results interpretation can be wrong.		

		Warnings
Slope	-3.355	
Intercept	40.28	
R ²	0.998	

		Warnings
Slope	-3.41	
Intercept	38.45	
R ²	0.995	




• Différents gènes domestiques peuvent être utilisés, dont Abelson (ABL1)

LE NOMBRE DE COPIES D'*ABL1* CONDITIONNE LA LIMITE DE DÉTECTION DU TEST (SENSIBILITÉ ANALYTIQUE OU LOD), UN PARAMÈTRE ESSENTIEL POUR LA MESURE DES RÉPONSES MR3/4/4.5/5....

ChaoJie Zhen et al., Volume 15, Issue 5, September 2013, Pages 556–564

LA LIMITE DE DÉTECTION DU TEST, varie au cours du temps !!!

CML Monitor

Cross *et al* 2015³ recommend the following control gene copy numbers are necessary to score molecular response: MR4.0 = 10,000-31,999 copies of ABL1 MR4.5 = 32,000-99,999 copies of ABL1

MR5.0 ≥100,000 copies of ABL1

La limite de détection du test, est conditionnée par le nombre de copies du gène de référence

ETAPES DE VALIDATION ANALYTIQUE: critères de validation de la série testée

Criteria	Acceptable values/results
Variations in C _T values between	$\leq 2 C_T$ if mean C_T value >36
replicates	\leq 1.5 C _T if mean C _T value \leq 36
Slope for standard curves	Between -3.0 and -3.9
R ² for standard curves	At least >0.95 better if >0.98
SP1 standard dilution (BCR-ABL 10 copies plasmid)	Must be detected and included in the standard curve
Quality control on ABL _{CN} value for biological samples, high positive RNA control, and the IS-MMR- Calibrator	ABL _{CN} >10,000 copies of ABL to reach the optimal sensitivity
PCR (water) and reverse transcription (RT negative) controls	For each $ABL_{CN} = 0$ and $Mbcr_{CN} = 0$
NCN obtained for IS-MMR Calibrator (NCN _{cal})	Must be within the interval 0.05–0.3
High positive RNA control	Must be detected
NCN obtained for the high positive RNA control converted to the international scale (IS-NCN _{HC})	Status: No major molecular response

Sources de variabilité: analytique

Table 1Details of the methods used in 57 participatinglaboratories

Protocol variable	Number (%)
RQ-PCR platform LightCycler (Roche Diagnostics) TaqMan (Applied Biosystems, Foster City, CA, USA) Rotor-Gene (Qiagen, Hilden, Germany) Stratagene Q-PCR system (Stratagene, La Jolla, CA, USA)	16 (28) 33 (58) 4 (7) 4 (7)
Control genes Total ABL (Gabert et al. ³⁰ (EAC protocol), $n = 36$; Emig et al. ²⁵ , $n = 5$; in-house methods, $n = 5$) GUSB (β -glucuronidase) (EAC) B2M (β -2 microglobuline) (EAC) G6PD (Glucose-6-phosphate dehydrogenase) PBGD (Porphobilinogen deaminase)	46 (80) 4 (7) 2 (4) 4 (7) 1 (2)
Reference material Ipsogen plasmids ²⁰ pME-2 plasmids ²³ Local in-house plasmids RNA calibrator (Roche t(9;22) kit, Roche Diagnostics) Others ^a	28 (49) 7 (12) 11 (19) 4 (7) 7 (12)
cDNA synthesis Random hexamer priming Random nonamer priming	55 (96) 2 (4)
Reverse transcriptase MMLV (Invitrogen, Karlsruhe, Germany) SuperScript (Invitrogen) AMV (Roche Diagnostics) Transcriptor (Roche Diagnostics) Multiscribe (Applied Biosystems)	38 (66) 11 (19) 5 (9) 2 (4) 1 (2)

Abbreviation: RQ-PCR, real-time quantitative PCR. ^apGD210, K562 calibrator, RNA dilutions, pGEM-Teasy-b3a2-plasmid.

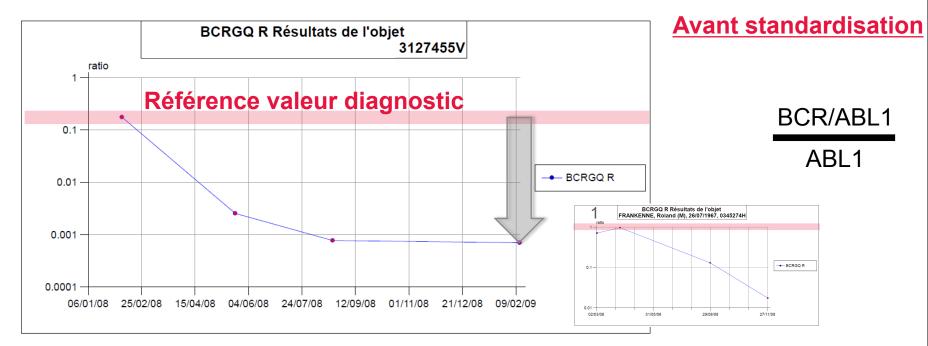
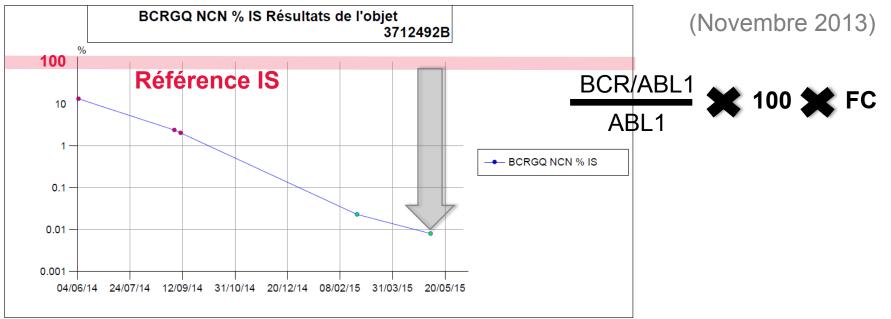

Sources de variabilité: rapportage

Table 1. Ways That Individual Laboratories May Report BCR-ABL Transcript Levels^{a,22-24}

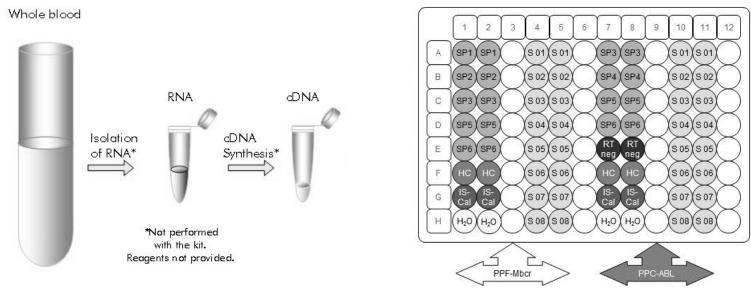

Value Reported	Method for Determination of Value	How Expressed
BCR-ABL copy number	Absolute copy number	Absolute copy number
BCR-ABL ratio	Ratio of BCR-ABL to a control gene	Percentage or fraction
Relative to single diagnostic sample	Highest <i>BCR-ABL</i> transcript level from a patient's single diagnostic sample converted to log ₁₀ scale and used as the baseline	Log reduction (ie, patient's current <i>BCR-ABL</i> transcript levels converted to log ₁₀ scale) from specified baseline
Relative to laboratory median of diagnostic samples	Median <i>BCR-ABL</i> transcript levels derived from RNA, cDNA, plasmid DNA, or cell line samples converted to log ₁₀ scale and used as baseline	Log reduction (ie, patient's current <i>BCR-ABL</i> transcript levels converted to log ₁₀ scale) from specified baseline
Relative to lab mean of diagnostic samples	Mean <i>BCR-ABL</i> transcript levels derived from RNA, cDNA, plasmid DNA, or cell line samples converted to log ₁₀ scale and used as baseline	Log-reduction (ie, patient's current <i>BCR-ABL</i> transcript levels converted to log ₁₀ scale) from specified baseline
Relative to previous patient sample	<i>BCR-ABL</i> transcript levels from patient's last test result or baseline test result converted to log ₁₀ scale and used as the baseline	Log-reduction (ie, patient's current <i>BCR-ABL</i> transcript levels converted to log ₁₀ scale) from specified baseline
Relative to diluted and undiluted K562 cells	<i>BCR-ABL</i> transcript levels derived from standard curve based on serial samples of diluted and undiluted K562 cells converted to \log_{10} scale and used as the baseline	Log-reduction (ie, patient's current <i>BCR-ABL</i> transcript levels converted to log ₁₀ scale) from specified baseline Percentage, per IS
Per IS	Anchored to a lab-specific pretreatment standardized value baseline <i>BCR-ABL</i> ratio (100% IS) and a 3-log reduction from the same (0.1% IS); mathematical conversion to IS by multiplication of the <i>BCR-ABL</i> /control ratio by a laboratory-specific conversion factor	Fall Supplement 2012 Lab Medicine

e23

Conséquences de la variabilité: résultats non convertis sur l'échelle internationale (« International scale », I.S) non comparables

Après standardisation

LE RECOURS A DES KITS COMMERCIAUX CERTIFIÉS INCLUANT CES CALIBRATEURS PERMET CETTE STANDARDISATION


Table 2. Selected List of Commercially Available RT-PCR Kits and Reagents for Processing Samples to Assay *BCR-ABL* Levels^a

Manufacturer and Location	Product Name	Selected Product Claims/Components	Principal Reagents/Components
lpsogen SA, Marseilles, France	<i>BCR-ABL</i> Mbcr IS-MMR Kit	 qRT-PCR to detect and quantify specific BCR-ABL fusion gene transcripts relative to ABL control gene expression in sample RNA BCR-ABL IS: NCN results converted to the IS Good sensitivity 	 IS-MMR Calibrator to convert NCN results to the IS and report MMR A high-positive control is provided to check for quality process of the experiment Single plasmid for <i>BCR-ABL</i> and <i>ABL</i>, limiting variability
MolecularMD, Portland, OR	One-Step qRT-PCR <i>BCR-ABL</i> Kit	 One-step protocol: reverse transcription and quantitative PCR reactions are performed in the same well, saving time and money Exceptional sensitivity down to 3 copies of <i>BCR-ABL</i> Integrated conversion factor, enabling results on the IS 	• Convenient RNA controls emulating high-level (10%) and low-level (0.1%) residual disease levels
Life Technologies Corporation, Carlsbad, CA	Asuragen <i>BCR/ABL</i> 1 Quant Test	 An LOD with >50% positivity was obtained at a 0.001% ratio Sensitive: precise quantification at low <i>BCR/ABL</i>1:<i>ABL</i>1 ratios aids in measuring MMR, minimal residual disease, and estimating risk of relapse IS harmonization: has performance characteristic required for reporting quantitative <i>BCR/ABL</i>1 results on the IS 	Quant Norm ARQs
Cepheid, Sunnyvale, CA	GeneXpert System <i>BCR/ABL</i> Assay (for research use only)	 Fully automated RT-PCR system that combines integrated sample preparation with amplification and detection <i>BCR-ABL</i> assay: closed system, nested RT-PCR assay for rapid, standardized research test reporting in approximately 2 hours 	n chamber with reagents, filters, and capture technologies necessary to extract, purify,

PCR quantitative *BCR-ABL1*: Solution commerciale utilisée au CHU Lg

IPSOGEN® BCR-ABL1 M BCR IS-MMR

QIAGEN® Sample and Assay Technologies

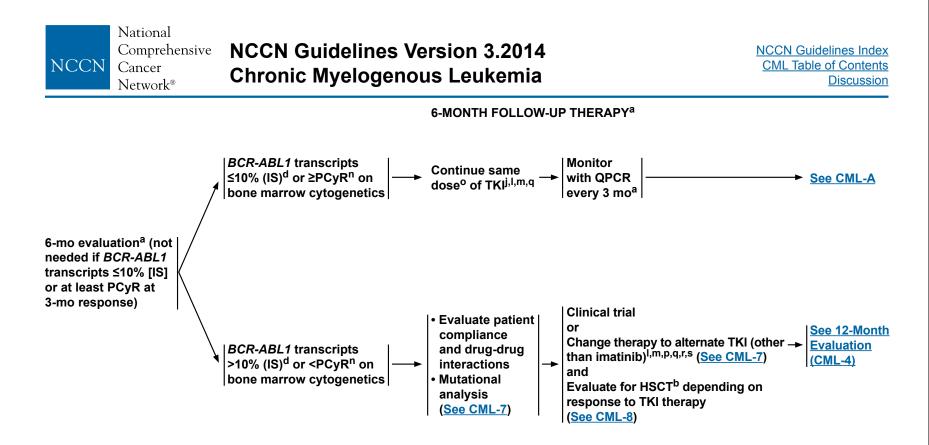
RNA isolation, cDNA synthesis, and qPCR

Trousse commerciale certifiée CEE IVD

https://www.qiagen.com/us/resources/resourcedetail?id=11ca6274-2ed2-4751-a4d6-a1eb98c8204a&lang=en

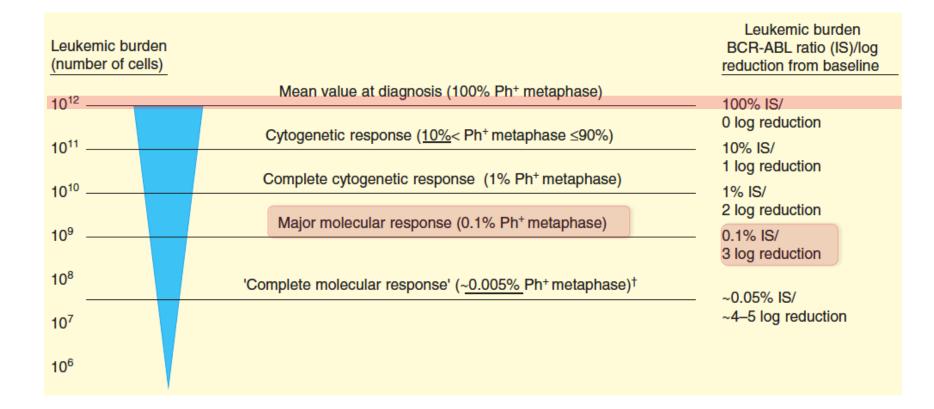
D'AUTRES SOLUTIONS COMMERCIALES SONT DISPONIBLES...

Rapports de PCR quantitative BCR-ABL1 I.S : buts ?

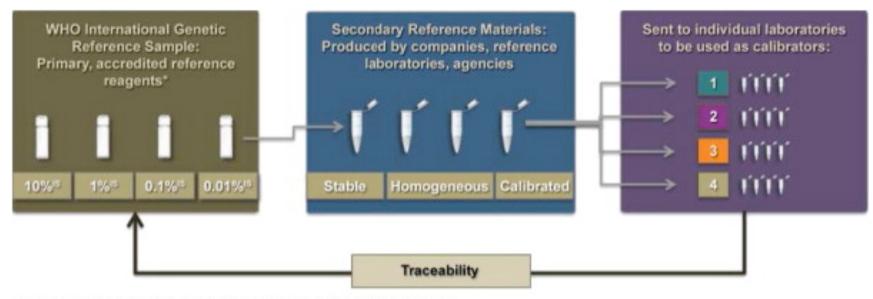

UPDATE **2013**

European LeukemiaNet Recommendations for the Management of Chronic Myeloid Leukemia (CML)

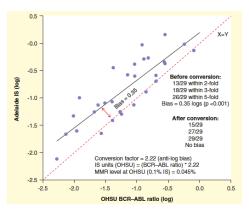
Response definitions for any TKI first line, and 2nd line in case of intolerance, all patients (CP, AP, and BC)


Time	Optimal response	Warning	Failure
Baseline		High risk Major route CCA/Ph+	
3 mos.	BCR-ABL ^{ıs} ≤10%* Ph+ ≤35% (PCyR)	BCR-ABL ^{is} >10%* Ph+ 36-95%	No CHR* Ph+ >95%
6 mos.	BCR-ABL ^{is} <1%* Ph+ 0% (CCyR)	BCR-ABL ^{is} 1-10%* Ph+ 1-35%	BCR-ABL ^{is} >10%* Ph+ >35%
12 mos.	BCR-ABL ^{is} ≤0.1%* (MMR)	BCR-ABL ^{IS} 0.1-1%*	BCR-ABL ^{is} >1%* Ph+ >0%
Then, and at any time	MMR or better	CCA/Ph- (-7, or 7q-)	Loss of CHR Loss of CCyR Loss of MMR, confirmed** Mutations CCA/Ph+
*and/or *	*in 2 consecutive tests, of which	one ≥1% IS: BCR-ABL c	on International Scale

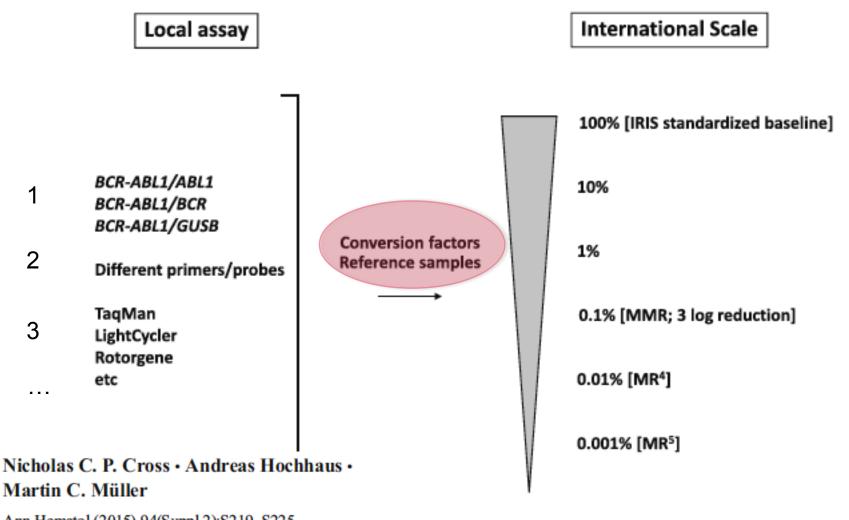
NCCN GUIDELINES 2014


http://www.nccn.org/professionals/physician_gls/f_guidelines.asp

LEUKEMIC BURDEN IN CML PATIENTS AT DIAGNOSIS AND TKI TREATMENT RESPONSE LANDMARKS DURING MONITORING USING CYTOGENETICS AND BCR-ABL RNA RQ-PCR STANDARDIZED TO THE INTERNATIONAL SCALE



Martin Luu and Richard D, Expert Rev. Mol. Diagn. 13(7), 749–762 (2013)


Comment réduire la variabilité: la standardisation *via* l'utilisation de matériaux de références calibrés et certifiés (par l'OMS)

*Approximately 3500 vials of each primary reference reagent were produced.

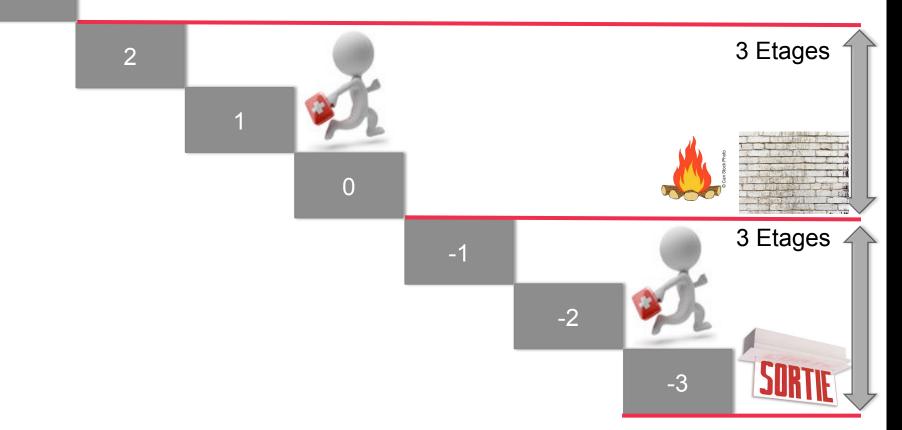
Sources multiples de variabilité requièrent une conversion: les matériaux de références calibrés permettent de générer un facteur de conversion et de convertir les résultats locaux sur une échelle internationale standardisée

Ann Hematol (2015) 94(Suppl 2):S219–S225 DOI 10.1007/s00277-015-2315-1

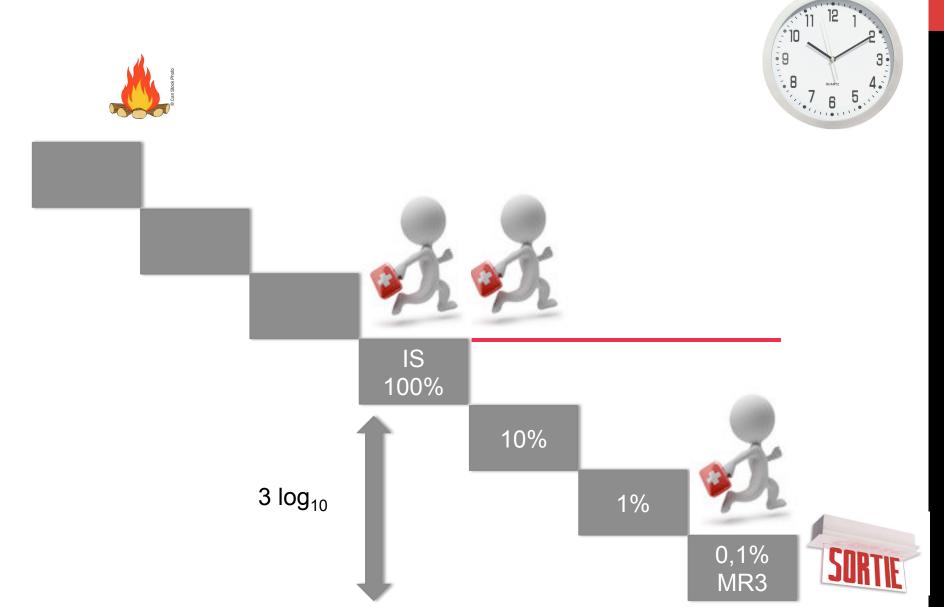
Une échelle internationale standardisée: Pour quoi faire ?

Descendre de 3 étages...vers la sortie !

© Can Stock Photo - csp13258469


Can Stock Photo - csp2132313

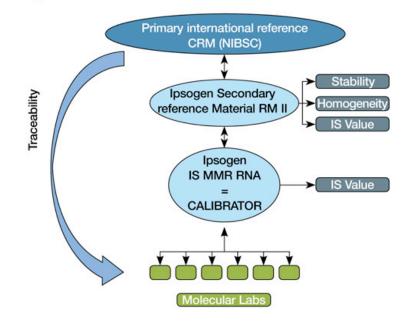
Une échelle internationale standardisée: Pour quoi faire ?


3

Descendre de 3 étages...vers la sortie !

Une échelle internationale standardisée: Pour quoi faire ?

Comment réduire la variabilité: la standardisation *via* l'utilisation de matériaux de références calibrés et certifié


ORIGINAL ARTICLE

A certified plasmid reference material for the standardisation of *BCR–ABL1* mRNA quantification by real-time quantitative PCR

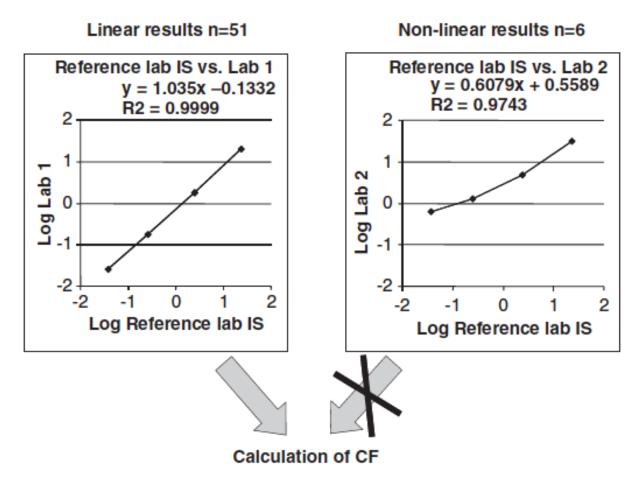
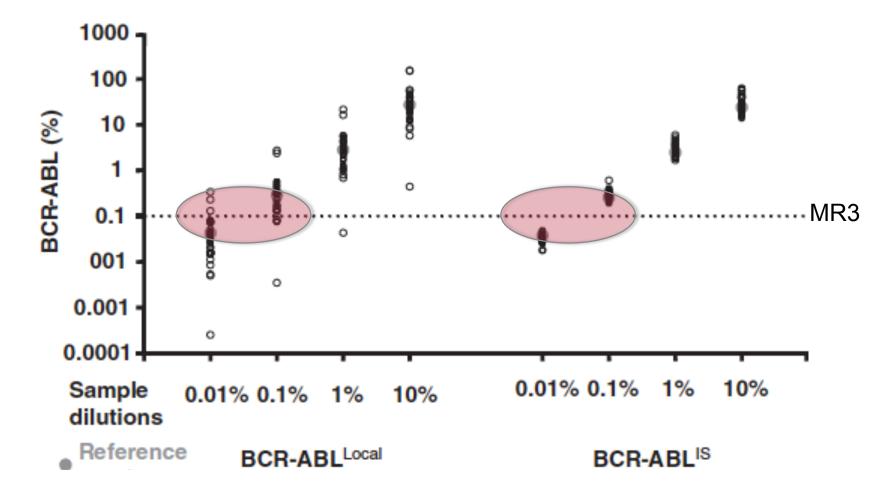

H White^{1,2}, L Deprez³, P Corbsier³, V Hall¹, F Lin^{1,2}, S Mazoua³, S Trapmann³, A Aggerholm⁴, H Andrikovics⁵, S Akikl⁶, G Barbany⁷, N Boeckx^{8,9}, A Bench¹⁰, M Catherwood¹¹, J-M Cayuela¹², S Chudleigh¹³, T Clench¹⁴, D Colomer¹⁵, F Daraio¹⁶, S Dulucq¹⁷, J Farrugia¹⁸, L Fletcher¹⁰, L Foroni²⁰, R Ganderton²¹, G Gerrard²⁰, E Gineikiene²², S Hayette²³, H El Housn²⁴, B Izzo²⁵, M Jansson²⁶, P Johnels²⁷, T Jurcek²⁸, V Kairisto²⁹, A Kizilors³⁰, D-W Kim³¹, T Lang²³, T Lion³³, KM Polakova³⁴, G Martinell¹³⁵, S McCarron³⁶, PA Merle³⁷, B Millner³⁸, G Mitterbauer-Hohendner³⁹, M Nagar⁴⁰, G Nickles⁴¹, J Nomdedeu⁴², DA Nymoen⁴³, EO Leibundgut⁴⁴, U Ozbek⁴⁵, T Pajič⁴⁶, H Pfeife⁴⁷, C Preudhomme⁴⁸, K Raudsepp⁴⁹, G Romeo⁵⁰, T Sacha⁵¹, R Talmaci⁵², T Touloumenidou³³, VHJ Van der Velden⁵⁴, P Waits⁵⁵, L Wang⁵⁶, E Wilkinson⁵⁷, G Wilson⁵⁸, D Wren⁵⁹, R Zadro⁶⁰, J Ziermann⁶¹, K Zol⁶², MC Müller⁶³, A Hochhaus⁶¹, H Schimmel⁹, NCP Cross^{1,2} and H Emons³

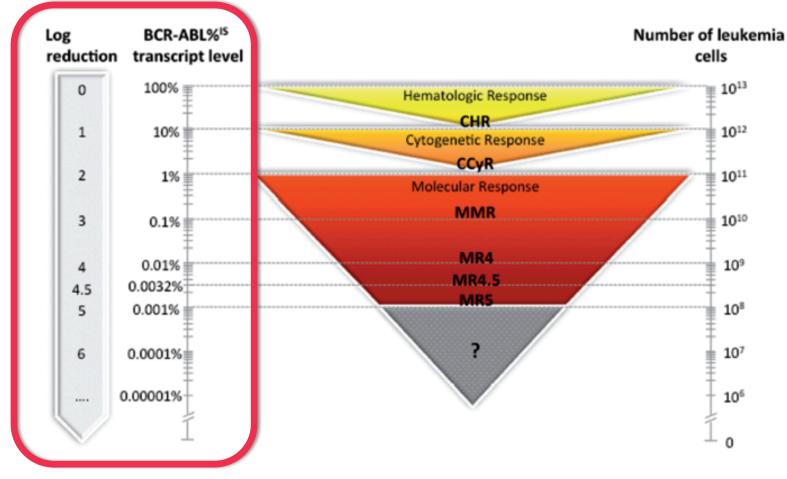
Fig. 1 IS-MMR calibrator traceability

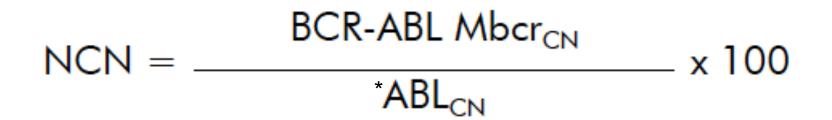
against WHO reference materials.



Impact de la conversion sur l'échelle internationale du NCN: pondération valeur locale par facteur de conversion

MC Müller, Leukemia (2009) 23, 1957–1963

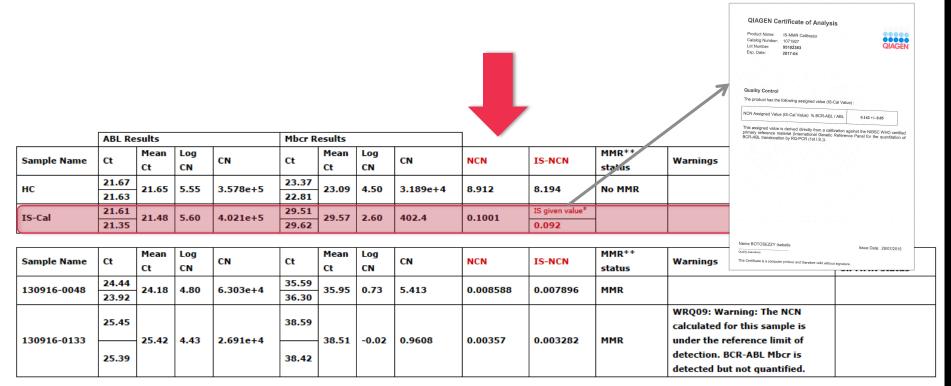

Impact de la conversion sur l'échelle internationale du NCN:

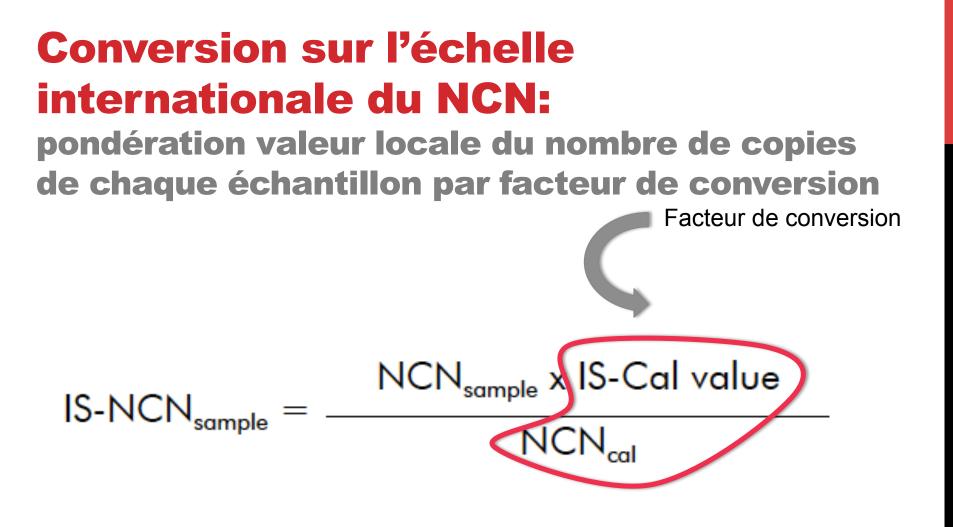

2. COMMENT LE RATIO *BCR-ABL* I.S % EST-IL CALCULÉ ET POURQUOI LE NOMBRE DE COPIES DU GÈNE DE MÉNAGE EST-IL SI IMPORTANT ?

V=TTxR2 2×FXR+TT 5 493+4 at 61x atb.

2. COMMENT LE RATIO *BCR-ABL* I.S % EST-IL CALCULÉ ET POURQUOI LE NOMBRE DE COPIES DU GÈNE DE MÉNAGE EST-IL SI IMPORTANT ?

NORMALISATION DU NOMBRE DE COPIES (NCN), pour chaque échantillon




* ou GUS, B2M...

Adapted from Manuel du kit ipsogen BCR-ABL1 Mbcr IS-MMR DX 01/2013 v1

Détermination du facteur de conversion (CF):

écart entre valeur du calibrateur certifié fournie par producteur et valeur calculée localement

Détermination d'un facteur de conversion (CF)

CF=valeur calibrateur IS / valeur mesurée du calibrateur

Adapted from Manuel du kit ipsogen BCR-ABL1 Mbcr IS-MMR DX 01/2013 v1

Illustration calcul NCN I.S local : CHU Lg

aleur IS-Cal: acteur conv:	0,953				А						В	A/B	A/B*1	00	N	CN*C	F	
Nom Ech.	Ct ABL	Ct moy	SD Ct	Qtv	Qty moy	Somme Qtt	Ct BCRG	Ct mov	SD Ct	Qty	Qty moy	Ratio	NCN	LoB	LoD	IS-NCN	Rép molec	Statut
IS-MMR-Calib	21,15 20,84	21,04	0,1500	384350.01 445644.25	414997	829994	29,24 29,11	29,17	0,0940	589,74 647,27	618,50	0.00149	0,14904	0	Q	0,142	V	
CTRL post haut	20,30 20,94	20,82	0,4517	895140,72 445169,71	570155	1140310	23,16 22,97	23,06	0,1312	41737,37 47528,77	44633,07	0.07828	7,82823	0	Q	7,459		No MMR
160112-0011 160112-0011	23,03 23,25	23,15	0,1618	103436,15 88173,59	95805	191610	24,62 24,70	24,88	0.0557	14962,05 14159,74	14560,90	0,15198	15.19548	D	Q	14,481		No MMR
160112-0047 160112-0047	23,65 23,82	23,74	0,1218	87121,91 59518,83	63320	126841	33,86 33,97	33,92	0,0783	23,19 21,45	22,32	0.00035	0,03525	D	٥	0,034		MMR
160112-0056 160112-0056	23,55 23,98	23,77	0,2979	71743.77 53475.00	62609	125218	35,92	17,96		5,47	2,74	0.00004	0,03437	D	NQ	0,004		MMR
160112-0057 160112-0057	23,88 24,07	23,97	0,1435	57905,41 50268,64	54082	109164	35,14 36.50	35,37	0.3125	9,43 6,92	8,18	0.00015	0,01512	D	Q	0,014		MMR
160113-0085 160113 0085	23,50 23,51	23,51	0,0090	74661,52 73992,28	74322	149544	37,98			1,30	0.65	0.00001	0,00087	ND	NQ	0,001		MMR
160114-0096 160114-0096	23,90 23,83	23,96	0,0494	56619.74 59449.82	58035	110070	38,63			0,82	0,41	0.00001	0,00071	ND	NQ	0,001		MMR
160114-0098 160114-0098	24,00 23,78	23,89	0,1569	52745.09 61577.97	57182	114323	33,20 33,10	33,15	0.0718	36,98 39,59	38.22	0.00037	38880,0	D	Q	0,064		Ind
160114-0105 160114-0105	23,02 23,17	23,10	0,1049	104007,71 93779,80	98894	197788					0,00					0,000	MR5	MMR
160114-0106 160114-0106	23,38 23,31	23,35	0.0478	81065.13 84961.63	83013	166027 *	38,58			0,85	0,43	0,00001	0,00061	ND	NG	0,000		MMR
160115-0078 160115-0078	23,98 24,24	24,10	0.1987	54311,55 44641,24	49476	98950	31,68 31,55	31,61	0,0918	106.83 117.00	111,92	0,00225	8,22620	D	Q	0,216		No MMR
160118-0009 160118-0009	23.99 23.99	23,99	0.0031	53031,20 53195,53	53113	106227	33,87 33,87	33,87	0,0005	23,08 23,09	23,09	0,00043	0.04347	D	Q	0,041		MMR
160118-0035 160118-0035	23,94 23,83	23,89	0,0795	54727,83 59194,22	56961	113922	37.88 38.88	38,38	0,7041	1,39 0,69	1.04	0,00002	0.00182	ND	NQ	0,002		MMR
160118-0076 160118-0076	24,79 24,62	24,70	0,1220	30367,49 34241,99	32300	64599	29.55 29.82	29,58	0.1927	475,25 392,70	433,98	0,01344	1,34350	D	Q	1,280		No MMF
160118-0081 160118-0081	22,77 22,91	22,84	0,0993	124606.62 112971.51	118789	237578	32,15 32,41	32,28	0,1855	78,80 63,91	70,35	0,00059	0,06923	D	Q	0,056		Ind
180119-0035 180119-0035	23,91 24,19	24,05	0,1929	55928.96 46237.27	51083	102185	26,31 26,48	28,39	0,1187	4587,53 4096.73	4337,13	0,08490	8,49034	D	Q	8,089		No MMP
160119-0087 160119-0087	22.62	22,58	0.0508	138090.38 145195.42	141642	283284	22,49 22.58	22,54	0,0592	66396.76 62615.97	64506,36	0,45542	40,54186	D	0	43,391		No MMF

Version 3

IS-NCN:

ï

- 1

BMH.BCRGQ_NCN_IS_ANA.A07

Non MMR

Non concluant

MMR

3. DISCUSSION INTERACTIVE SUR LE FORMAT DU RAPPORT DE LABORATOIRE IDÉAL

Rapports de PCR quantitative BCR-ABL1 au CHU de Liège : situation actuelle

Rapports de PCR quantitative BCR-ABL1: buts ?

- Objectiver la qualité/profondeur de la réponse à un traitement donné;
- Sur une échelle internationale standardisée;
- Décider d'analyses complémentaires éventuelles;
- Adapter (ou non) le traitement et évaluer les répercussions

Illustration 1

Centre Hospitalier Universitaire de Liège Domaine Universitaire du Sart Tilman - B35 - 4000 LIEGE 1 www.chullege.be

Agréation : Nº 8.62700.18.998

Prescrit par DR DE PASQUAL AURELIE

CENTRE DE GENETIQUE

Agréation : 8.62990.19.996 art.33 & bis Génétique clinique - 04/365.71.24 Biochimie génétique - 04/366.76.95 - fax 04/366.84.74 Cytogénétique - 04/366.25.61 - fax 04/366.29.74 Génétique moléculaire - 04/366.24.78 Biologie moléculaire hématologique - 04/368.25.61

16841574598 LHCV

Impression du: 01/02/2016 à 18:56		
Réf du labo: 14-160119-0087 Votre Réf: 248518		
Protocole DUPLICATA		
Protocole DUPLICATA		
Nom, prénom:		
Nom, prénom:	Date du prélèvement: 1	9/01/2016 10:40
	Date du prélèvement: 1	9/01/2016 10:40
Nom, prénom: Né(e) le 29/03	Date du prélèvement: 1 Date de réception: 19/0	

BIOLOGIE MOLECULAIRE HEMATOLOGIQUE

Echantillon

Moelle

La prescription reçue n'était pas cochée. Pourriez vous prendre contact rapidement avec notre secrétariat afin de nous communiquer les analyses à réaliser. Merci

Renseignements cliniques LMC Progression suspectée. Premier prélèvement reçu le 02/11/2012.

RT-PCR Quantitatives

M BCR-ABL1/10E4ABL1	0.00100	8	0.02300	03/12/14
(NCN% IS): (Ratio normalisé sur échelle internationale "IS")				
Contrôle(s) amplificabilité - ser	sibilité			
ABL1 (Nbr copies):	66614	copies	= moyenr	ne !!!
Le nombre de copies d'ABL1 conditionne la limite de détection (LOD) du test.				
Si le transcrit BCR-ABL1 n'est pas détecté, un nombre minimum de:				
- 10.000 - 32.000 - 100.000				
copies d'ABL1 doit être présent pour déterminer si le patient est en:				
- MR 4 - MR 4.5 MR 5.				
Commentaires				
Le ratio normalisé M BCR-ABL1/ABL1sur l'échelle qui correspond à une réduction de >= 4.5 log10 l'IRIS et à une réponse moléculaire 4.5 ou MR4. Pour rappel une réponse moléculaire majeure (M0	par rapport à .5.	la valeur	de référence bas	ale selon

Votre patient présente donc PLUS qu'une réponse moléculaire majeure (MMR) selon les critères définis par l'European LeukemiaNet (ELN).

Illustration 2

RT-PCR Quantitatives

0.01000 %	0.00900	22/01/15
	0.01000 %	0.01000 % 0.00900

(NCN% IS): (Ratio normalisé sur échelle internationale "IS")

Contrôle(s) amplificabilité - sensibilité

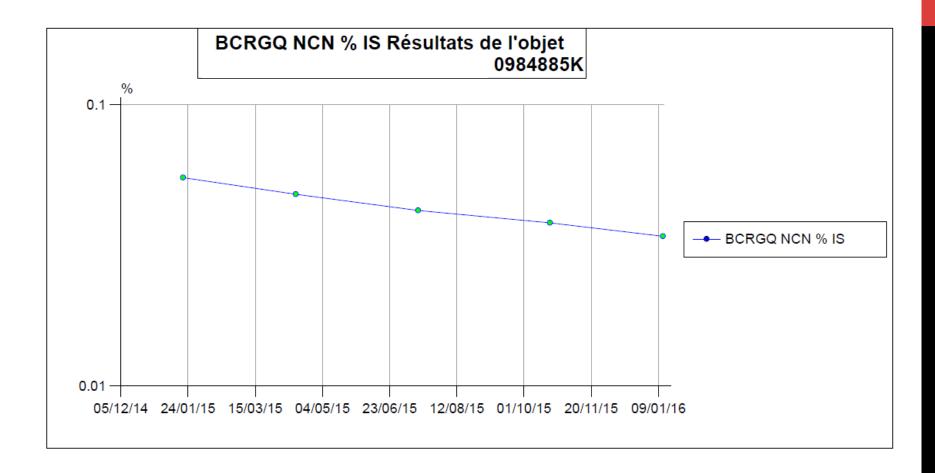
ABL1 (Nbr copies):

77090 copies

Le nombre de copies d'ABL1 conditionne la limite de détection (LOD) du test.

Si le transcrit BCR-ABL1 n'est pas détecté, un nombre minimum de:

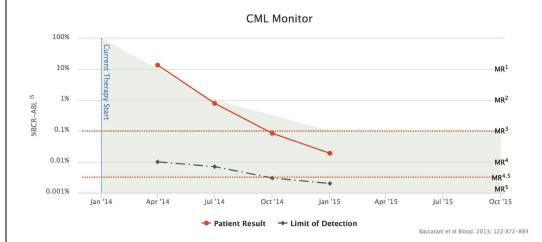
- 10.000
- 32.000
- 100.000


copies d'ABL1 doit être présent pour déterminer si le patient est en:

- MR 4
- MR 4.5
- MR 5.

Commentaires

Le ratio normalisé M BCR-ABL1/ABL1 rapporté sur l'échelle internationale (NCN-IS) est <= à 0.1%.


Ceci correspond à une réponse moléculaire majeure (MMR), ou MR3, selon les critères définis par l'European LeukemiaNet (ELN), soit une réduction >= 3 logl0 par rapport à la valeur de référence basale selon l'IRIS.

enABL, BCR-ABL Report Optimization: le format idéal de rapport

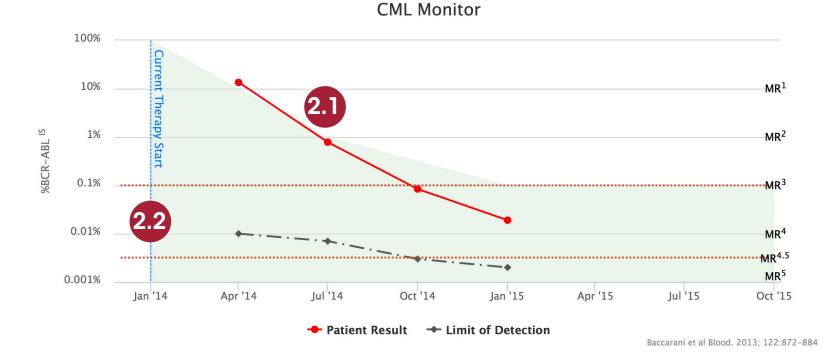
First Name:	Physician's Name:			
Last Name:	Physician's Location:			
Sex:				
Birth Date: 01/02/1944				
Patient Number: 08642				
Current Diagnosis: Chronic Myeloid Leukaemia – Chronic Phase	Current Therapy Start Date: 01/01/2014 Current Therapy: Nilotinib			
Date of Current Diagnosis: 01/01/2014 Clinical Details: 12 month follow-up	Current Therapy Status: Patient on first-line therapy or second-line therapy due to first-line therapy intolerance			
Results				
Sample ID: 323421	MMR Achieved: Yes			
%BCR-ABL IS: 0.019%	MR4.5 Achieved: No			
%BCR-ABL/CGx100: 0.022%	Sample Quality: Pass			

Interpretative Comments: The patient has achieved or maintained MMR, which is defined by ELN as an optimal response to therapy.

Date Taken	Sample ID	Sample Type	%BCR-ABL ^{IS}
01/01/2015	323421	Peripheral Blood (PB)	0.019
10/10/2014	333444	Peripheral Blood (PB)	0.084
07/07/2014	222333	Peripheral Blood (PB)	0.783
04/04/2014	111222	Peripheral Blood (PB)	13.5

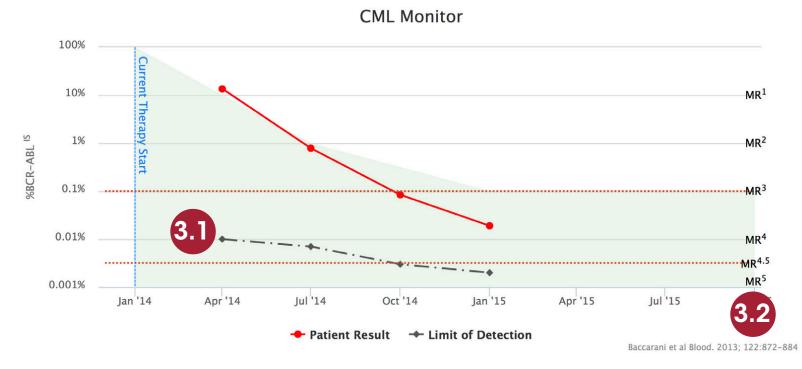
Technical details

Control Gene (CG) used: ABL1 BCR-ABL Copy Number: 10 Control Gene Copy Number: 46000 Methodology used: Qiagen IS MMR Transcript type: e13a2 Limit of Detection: 0.0023%


LES DONNÉES A PRÉSENTER DANS LE RAPPORT:

%BCR-ABL/CGx100	The raw BCR-ABL to control gene ratio expressed as percentage, which is then aligned to the International Scale with use of a conversion factor.
BCR-ABL Copy Number	The number of BCR-ABL1 molecules detected in the sample, the International Scale is only valid for major transcripts (e14a2 and 13a2).
Control Gene (CG) Used	This is the gene that is used to normalize the BCR-ABL result. This information is required in order to interpret the control gene copy number, particularly important when BCR-ABL is undetectable. Options include: • GUSB • ABL1 • BCR • G6PDH • B2M
Methodology used	This information provides the ordering physician context for the interpretation of the result. The description of the protocol used to perform the test should be informative but concise. Example: <i>Qiagen IS MMR Fusion Quant RQ-PCR performed on mRNA</i> . Excessive detail should be avoided.

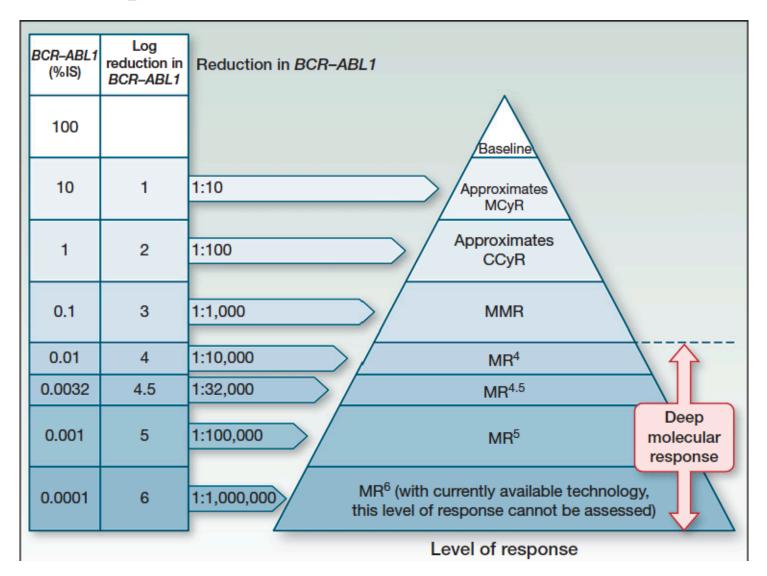
LES DONNÉES A PRÉSENTER DANS LE RAPPORT:



enABL, BCR-ABL Report Optimization: implémentation d'une représentation visuelle des données historiques de suivi

enABLe Better Reports, BCR-ABL Report Optimization Guidance, © 2015 Novartis

enABL, BCR-ABL Report Optimization: implémenter la représentation de la limite de détection (LoD) et évaluation du niveau de la réponse moléculaire atteint


Cross *et al* 2015³ recommend the following control gene copy numbers are necessary to score molecular response:

MR4.0 = 10,000-31,999 copies of ABL1 or 24,000-76,999 copies of GUSB MR4.5 = 32,000-99,999 copies of ABL1 or 77,000-239,999 copies of GUSB

MR5.0 ≥100,000 copies of ABL1 or ≥240,000 copies of GUSB

enABLe Better Reports, BCR-ABL Report Optimization Guidance, © 2015 Novartis

Relation *BCR-ABL1* **I.S et profondeur de la réponse moléculaire:**

François-Xavier Mahon Clin Cancer Res; 20(2) January 15, 2014

Leukemia (2015), 1–5 © 2015 Macmillan Publishers Limited All rights reserved 0887-6924/15

www.nature.com/leu

Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia

NCP Cross^{1,2}, HE White^{1,2}, D Colomer³, H Ehrencrona⁴, L Foroni⁵, E Gottardi⁶, T Lange⁷, T Lion⁸, K Machova Polakova⁹, S Dulucq¹⁰, G Martinelli¹¹, E Oppliger Leibundgut¹², N Pallisgaard¹³, G Barbany¹⁴, T Sacha¹⁵, R Talmaci¹⁶, B Izzo¹⁷, G Saglio⁶, F Pane^{17,18}, MC Müller¹⁹ and A Hochhaus²⁰

Leukemia advance online publication, 27 February 2015; doi:10.1038/leu.2015.29

Published definitions of MR

- MR4 (≥4-log reduction from IRIS baseline) = either (i) detectable disease ≤ 0.01% BCR-ABLIS or
 (ii) undetectable disease in cDNA with 10 000–31 999 ABL1 transcripts
- MR4.5 (≥4.5-log reduction from IRIS detectable disease ≤0.0032% BCR-ABLIS or
 (ii) undetectable disease in cDNA with 32 000–99 999 ABL1 transcripts

 MR5 (≥5-log reduction from IRIS baseline) = either (i) detectable disease ≤ 0.001% BCR-ABLIS or (ii) undetectable disease in cDNA with ≥ 100 000 ABL1 transcripts

DEFINING DETECTABLE AND UNDETECTABLE DISEASE

- The cutoff for positivity should correspond to a quantification cycle (Cq) of intercept +1 (which should generally lead to cutoffs of 41–42 Cq). In other words, samples with a Cq higher than intercept +1 should be considered as undetectable.
- The 'no-template control' wells and reagent blanks should ideally not cross the threshold at any point but should certainly be at least 2 Cq above the intercept Cq for that run. If this is not the case, then the run must be considered as failed.
- If replicate assays are performed for BCR-ABL1, any of the individual replicates are positive according to the criteria above, we recommend that the final result is considered as positive, that is, detectable disease
- all low level-positive replicates should be assigned a specific number of BCR-ABL1 transcripts by extrapolating below the lowest plasmid standard.

SCORING MR WHEN DISEASE IS DETECTABLE (1)

Table 1. Summary of reference gene numbers required for scoring deep molecular response						
	MR^4	MR ^{4.5}	MR ⁵			
Minimum sum of reference gene transcripts irrespective of whether <i>BCR-ABL1</i> is detected or not ^a BCR-ABL ^{IS} level for positive samples ^b	10 000 <i>ABL1</i> 24 000 <i>GUSB</i> ≼ 0.01%	32 000 <i>ABL1</i> 77 000 <i>GUSB</i> ≼ 0.0032%	100 000 <i>ABL1</i> 240 000 <i>GUSB</i> ≼ 0.001%			

^aNumbers of reference gene transcripts in same volume of cDNA that is tested for *BCR-ABL1*. The minimum number in any individual replicate should be 10 000 *ABL1* or 24 000 *GUSB*. ^bProvided that the minimum reference gene copy numbers in the row above are fulfilled.

Example 3 (Lab CF = 0.5):

- BCR-ABL1 replicate 1: undetectable in 5 µl cDNA.

- BCR-ABL1 replicate 2: detectable in 5 μl cDNA, estimated 3 copies.

- ABL1 replicate 1: 9000 copies in 5 µl cDNA.

- ABL1 replicate 2: 8000 copies in 5 µl cDNA.

Result = inevaluable for MR.

Comment: Although the ((sum of BCR-ABL1)/(sum of reference gene)) \times CF \times 100 is o 0.01%, the sample should be considered as inevaluable for the assessment of MR as the ABL1 copy number in each replicate is <10000.

Example 1 (Lab CF = 0.8):

- BCR-ABL1 replicate 1: detectable in 2 µl cDNA, estimated 7 copies.
- BCR-ABL1 replicate 2: detectable in 2 µl cDNA, estimated 3 copies.
- ABL1 replicate 1: 24 000 copies in 2 µl cDNA.
- ABL1 replicate 2: 28 000 copies in 2 µl cDNA.

```
Result=(sum BCR-ABL1=10)/(sum ABL1=52000)×0.8×100=
0.015% = MMR but not MR4.
```

SCORING MR WHEN DISEASE IS DETECTABLE (2)

Table 1. Summary of reference gene numbers required for scoring deep molecular response					
	MR^4	MR ^{4.5}	MR⁵		
Winimum sum of reference gene transcripts irrespective of whether <i>BCR-ABL1</i> is detected or not ^a BCR-ABL ^{IS} level for positive samples ^b	10 000 <i>ABL1</i> 24 000 <i>GUSB</i> ≼ 0.01%	32 000 <i>ABL1</i> 77 000 <i>GUSB</i> ≪ 0.0032%	100 000 <i>ABL1</i> 240 000 <i>GUSB</i> ≼ 0.001%		

^aNumbers of reference gene transcripts in same volume of cDNA that is tested for *BCR-ABL1*. The minimum number in any individual replicate should be 10 000 *ABL1* or 24 000 *GUSB*. ^bProvided that the minimum reference gene copy numbers in the row above are fulfilled.

Example 5 (Lab CF = 0.25):

- BCR-ABL1 replicate 1: undetectable in 2 µl cDNA.

- BCR-ABL1 replicate 2: detectable in 2 μl cDNA, estimated 3 copies.

– ABL1 replicate 1: 12 000 copies in 2 µl cDNA.

- ABL1 replicate 2: 14 000 copies in 2 µl cDNA.

Result = (sum BCR-ABL1 = 3)/(sum ABL1 = 26 000) × 0.25 × 100 = 0.0029%; sum of ABL1 < 32 000 = MR4.

Comment: Although the ((sum of BCR-ABL1)/(sum of reference gene)) \times CF \times 100 is < 0.0032%, the total ABL1 value is < 32 000 and should thus be considered as MR4.

SCORING MR WHEN DISEASE IS UNDETECTABLE

Table 1. Summary of reference gene numbers required for scoring deep molecular response

	MR ⁴	<i>MR</i> ^{4.5}	MR ⁵
Minimum sum of reference gene transcripts irrespective of	10 000 ABL1	32 000 ABL1	100 000 ABL1
whether BCR-ABL1 is detected or not ^a	24 000 GUSB	77 000 GUSB	240 000 GUSB
BCR-ABL ^{IS} level for positive samples ^b	≼0.01%	≤0.0032%	≤0.001%

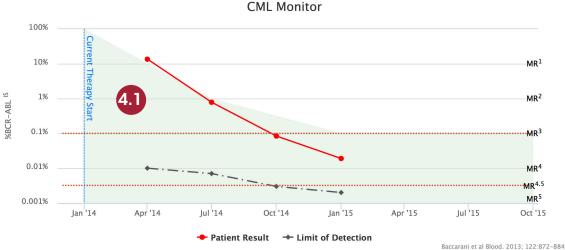
^aNumbers of reference gene transcripts in same volume of cDNA that is tested for *BCR-ABL1*. The minimum number in any individual replicate should be 10 000 *ABL1* or 24 000 *GUSB*. ^bProvided that the minimum reference gene copy numbers in the row above are fulfilled.

Example 13:

- BCR-ABL1 replicate 1: undetectable in 5 µl cDNA.
- BCR-ABL1 replicate 2: undetectable in 5 µl cDNA.
- ABL1 replicate 1: 6000 copies in 5 µl cDNA.
- ABL1 replicate 2: 14 000 copies in 5 µl cDNA.

Result = inevaluable for MR.

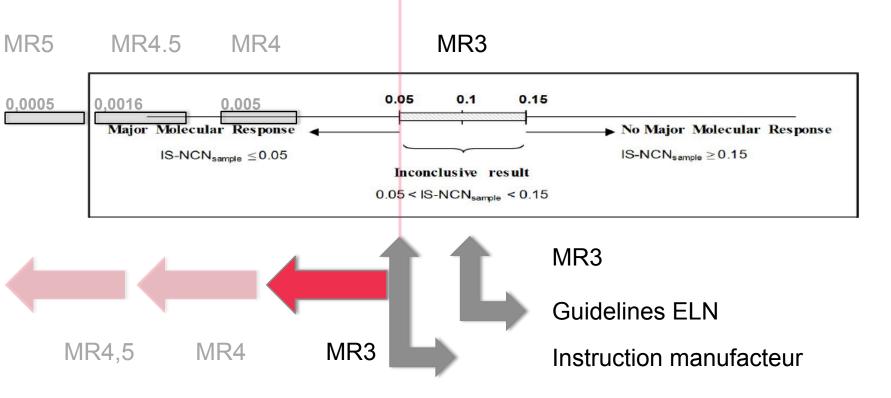
Comment: One replicate is <10000 ABL1 and hence the sample should be considered as inevaluable for MR. As the two ABL1 replicates are discordant, the reference gene qPCR could be repeated.


Example 9:

- BCR-ABL1 replicate 1: undetectable in 5 µl cDNA.
- BCR-ABL1 replicate 2: undetectable in 5 µl cDNA.
- ABL1 replicate 1: 16 500 copies in 5 µl cDNA.
- ABL1 replicate 2: 18 000 copies in 5 µl cDNA.

enABL, BCR-ABL Report Optimization: interprétation des recommandations ELN

y	Implementati	on Guidance	Common Mistakes to Avoid		
	recommendat shading shoul adhere to the Note: There is	ding represents optir ions ² and differs dep d be adjusted accor following definitions no equivalent defini ore for these patient	pendent on line of the ding to therapy star tion for patients on	nerapy.The t date and third-line	Chart shading is not commonly incorporated into graphical representation of patients' results. Commonly only first-line response is included. Second-line criteria, and the lack of third-line response criteria, are essential for accurate ELN
	First-line Patie		Second-line F		interpretation for all patients.
			0		interpretation for all patients.
	First-line Patie	ents ²	Second-line F	Patients ²	interpretation for all patients.
	First-line Patie	ents ² Green Area	Second-line F	Patients ² Green Area	interpretation for all patients.
	First-line Patie	ents ² Green Area ≤10% IS	Second-line F Time point 3 Months	Patients ² Green Area ≤10% IS	interpretation for all patients.

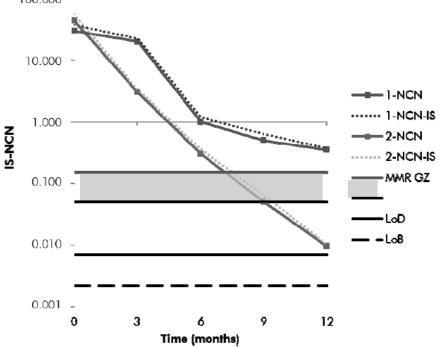


enABLe Better Reports, BCR-ABL Report Optimization Guidance, © 2015 Novartis

Zone grise :

la prise en compte de l'incertitude de mesure liée à la méthode peut paradoxalement générer une certaine « variabilité » dans la détermination du statut MR3/MR4....

Coefficient de variation sur l'IS-NCN: 100%



Manuel du kit ipsogen BCR-ABL1 Mbcr IS-MMR DX 01/2013 v1

Détermination du statut MMR (MR3) : prise en compte de l'incertitude de mesure liée à la méthode

Critères d'interprétation kit QIAGEN

- IS-NCN_{sample} ≤0.05: Major molecular response
- **0.05** <**IS-NCN**_{sample} <**0.15**: Gray zone around the MMR inconclusive result
- IS-NCN_{sample} ≥0.15: No major molecular response

4. DIFFÉRENCE ENTRE LABORATOIRE ACCRÉDITÉ ET LABORATOIRE STANDARDISÉ

ACCRÉDITATION

ISO 15189 est une norme internationale publiée par l'ISO en 2012 qui spécifie les exigences de qualité et de compétence propres aux laboratoires de biologie médicale (LBM). Son titre est "Laboratoire de biologie médicale. Exigences concernant la qualité et la compétence »

https://fr.wikipedia.org/wiki/ISO_15189

 Laboratoire accrédité: certificat d'accréditation délivré en Belgique par BELAC, si respect norme ISO 15189

Annexe au certificat d'accréditation Bijlage bij accreditatie-certificaat Annex to the accreditation certificate Beilage zur Akkreditatierungszertifikat

128-MED

NBN EN ISO 15189:2012

Version/Versie/Version/Fassung	12
Date d'émission / Uitgiftedatum /	2015-10-26
Issue date / Ausgabedatum:	2015-10-28
Date limite de validité /	
Geldigheidsdatum / Validity date /	2016-02-23
Gültigkeitsdatum:	

Nicole Meurée-Vanlaethem La Présidente du Bureau d'Accréditation Voorzitster van het Accreditatiebureau Chair of the Accreditation Board Vorsitzende des Akkreditierungsbüro

L'accréditation est délivrée à/ De accreditatie werd uitgereikt aan/ The accreditation is granted to/ Die akkreditierung wurde erteilt für:

UNILAB Lg Site du Sart-Tilman **CENTRE HOSPITALIER UNIVERSITAIRE DE LIEGE** Domaine Universitaire du Sart-Tilman, CHU B35 **4000 LIEGE**

Secrétariat:	Accrédit	ation BELA	C Accred	ditatie
Service public fédéral, Economie, P.M.E., Classes moyennes et Energie				Federale Overheidsdiens K.M.O., Middenstan
Direction générale de la Qualité et de la	Sécurité	Tél: +32 2 277	54 34	Algemene Directie Kwaliteit
Division Qualité et Innovation		Fax: +32 2 277	54 41	Afdeling Kwaliteit
Bd du Roi Albert II, 16 - 5 ^{ime} étage - B-100	0 Bruxelles			Koning Albert II-laan 16 - 5te verd B
Website: http://economie.fgov.be Numéro d'entreprise: 0314.595.348		Internet: http://bela Mail: Belac@econ		Website: http://ecor Ondernemingsnummer; 0
Numbro d'entreprise, co 14.000.040	C*1	лап. венастически	omie.igov.be	ondernenningsnummer. C

Secretariaat: st, Economie, nd en Energie it en Veiligheid eit en Innovatie B-1000 Brussel onomie.fgov.be 0314.595.348

Laboratoire réalisant l'analyse	Domaine d'activité	CODE ESSAI	PROPRIETE MESUREE	ECHANTILLON	METHODE/APPAREIL
Biologie Moléculaire Hématologique	Génétique - Biologie Moléculaire	BCRG BIOMED-	Détection du transcrit M - BCR-ABL	Moëlle, sang	PCR nichée
(GNT.BMH)	Hématologique	1_T			
Biologie Moléculaire Hématologique	Génétique - Biologie Moléculaire			Moëlle, sang	qPCR
(GNT.BMH)	Hématologique		Transcrit BCR-ABL Mbcr p210		

.be

http://www.chu.ulg.ac.be/jcms/c 3589182/accreditation

LA STANDARDISATION « EUTOS »

Leukemia (2006) 20, 1925–1930 © 2006 Nature Publishing Group All rights reserved 0887-6924/06 \$30.00

www.nature.com/leu

REVIEW

Rationale for the recommendations for harmonizing current methodology for detecting *BCR-ABL* transcripts in patients with chronic myeloid leukaemia

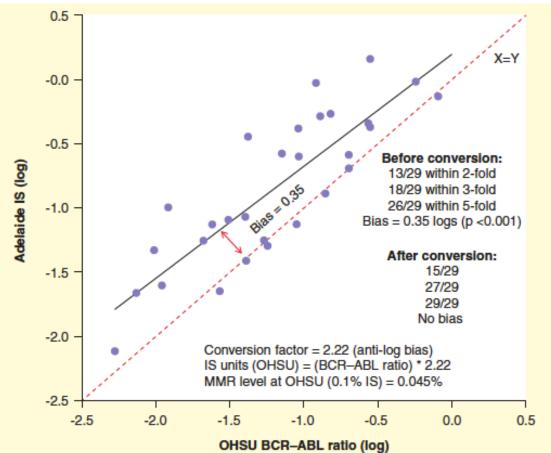
S Branford¹, NCP Cross², A Hochhaus³, J Radich⁴, G Saglio⁵, J Kaeda⁶, J Goldman⁷ and T Hughes⁸

http://www.nature.com/leu/journal/v20/n11/full/2404388a.html

Leukemia (2009) 23, 1957–1963 © 2009 Macmillan Publishers Limited All rights reserved 0887-6924/09 \$32.00

www.nature.com/leu

SPOTLIGHT REVIEW


Harmonization of molecular monitoring of CML therapy in Europe

MC Müller¹, NCP Cross², P Erben¹, T Schenk¹, B Hanfstein¹, T Ernst^{1,2}, R Hehlmann¹, S Branford³, G Saglio⁴ and A Hochhaus^{1,5}

¹III. Medizinische Klinik, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany; ²National Genetics Reference Laboratory, Salisbury District Hospital and University of Southampton School of Medicine, Salisbury, UK; ³Institute of Medical and Veterinary Science, Adelaide, Australia; ⁴Divisione di Medicina Interna e di Ematologia, Ospedale Universita di Torino, Turin, Italy and ⁵Department Hematology/Oncology, Universitätsklinikum Jena, Jena, Germany

http://www.nature.com/leu/journal/v23/n11/abs/leu2009168a.html

STANDARDISATION EUTOS

« Participation in samples exchanges with the Adelaide Laboratory was initially the only mechanism to determine a laboratory-specific conversion factor (CF) to the IS. In order that an accurate IS CF is derived and validated, the protocol involves exchanging 20–30 samples between the field laboratory and the Adelaide Lab. » Martin Luu and Richard D, Expert Rev. Mol. Diagn. 13(7), 749–762 (2013)

5. THE BELGIAN STANDARDIZATION PROJECT

Rationale:

"A novel approach for standardizing *BCR-ABL1* quantification on the International Scale on behalf of the Belgian working group on *BCR-ABL1* IS standardization' by Maes et al. ". The Journal of Molecular Diagnostics (submitted).

« Deals with the problem of standardization of *BCR-ABL1* quantification, offering an alternative approach for calibration to the IS scale that is achievable by almost all laboratories. »

PRINCIPLES - STRATEGY

- UK NEQAS LI BCR-ABL1 quantification program;
- Iyophilized cell line samples to over 100 laboratories every six months;
- Information on the 25th, 50th and 75th percentiles of BCR-ABL1/ABL1 quantification converted using the International Scale (IS) in labs using ABL1 as control gene for 16 samples taken between March 2011 and January 2014 (samples 110-125);
- Median IS *BCR-ABL1* values ranging between 0.01 % and 5.33 %;
- Combined with BCR-ABL1/ABL1 and ABL1 quantifications from 11 Belgian labs that use ABL1 as control gene;
- Performance of the selected CF validated on newly collected samples taken between March 2014 and January 2015 (samples 126-131);
- For this validation, EQA results of 9 laboratories were available.
- Comparison of the selected CF with the CF obtained through commercial reference material (mostly Nanogen) available for five labs (labs 2, 3, 4, 8 and 12) using a Wilcoxon signed-rank test.

DESCRIPTION OF PROPOSED CONVERSION FACTORS

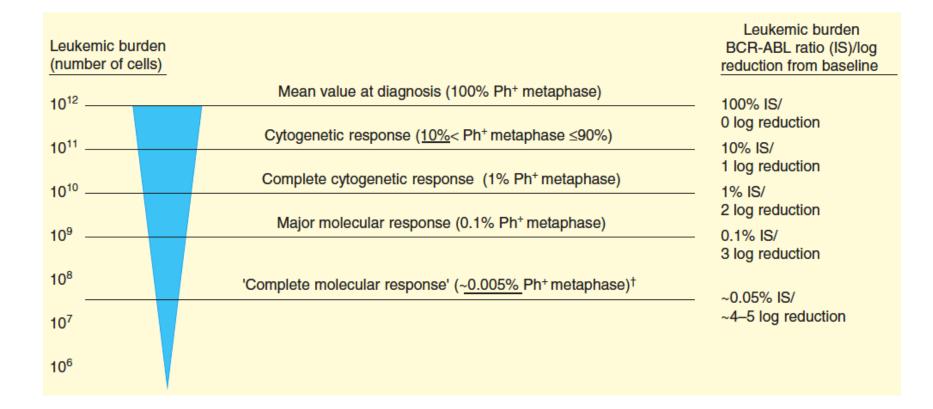
- Optimization of the RT-qPCR BCR-ABL1 flow with improvement of the RT step efficacy and increase of the LOD;
- 2. The first two CFs were defined as:

CF1 = mean(*ratio_{ls})*

and

CF2 = median (*ratio_{IS}*),

with ratio_{IS} = (median_s, measurement_{IS})


CONCLUSIONS: AIMS OF THE MEETING

- How is BCR-ABL1 mRNA Molecular monitoring performed at Unilab Lg in practice ?
- What's should integrate a clear and concise molecular reporting to assist physicians in clinical decision making ?
- The Belgian BCR-ABL1 Standardization Project
- Milestones in CML monitoring & implications for the future

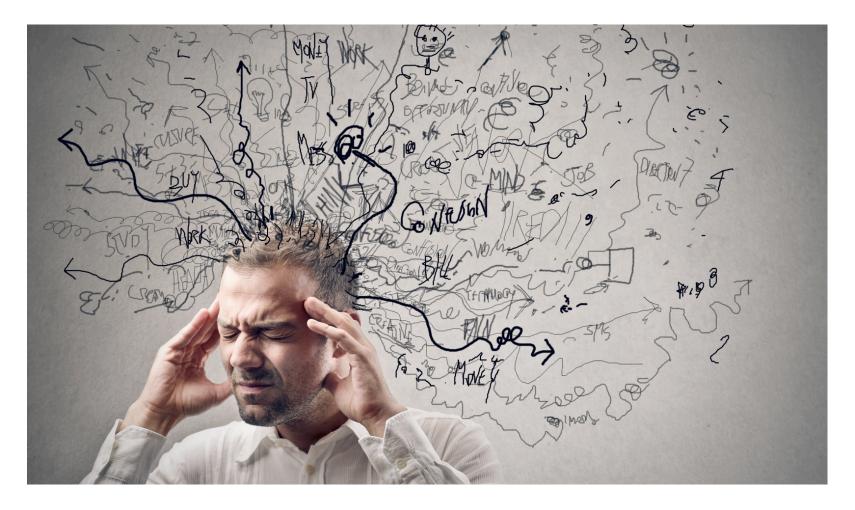
RATIO BCR-ABL1/ABL1 IS

V=TTXRZ / S=2×TTXR S=2×TEXR+ 100 11×C 40e (a+b)x+ (4a3+4a"B) -2a × SI+(a+b)×(x2

LEUKEMIC BURDEN IN CML PATIENTS AT DIAGNOSIS AND TKI TREATMENT RESPONSE LANDMARKS DURING MONITORING USING CYTOGENETICS AND BCR-ABL RNA RQ-PCR STANDARDIZED TO THE INTERNATIONAL SCALE

Martin Luu and Richard D, Expert Rev. Mol. Diagn. 13(7), 749–762 (2013)

Rapports de PCR quantitative BCR-ABL1: buts ?


UPDATE **2013**

European LeukemiaNet Recommendations for the Management of Chronic Myeloid Leukemia (CML)

Response definitions for any TKI first line, and 2nd line in case of intolerance, all patients (CP, AP, and BC)

Time	Optimal response	Warning	Failure		
Baseline		High risk Major route CCA/Ph+			
3 mos.	BCR-ABL ^{ıs} ≤10%* Ph+ ≤35% (PCyR)	BCR-ABL ^{IS} >10%* Ph+ 36-95%	No CHR* Ph+ >95%		
6 mos.	BCR-ABL ^{is} <1%* Ph+ 0% (CCyR)	BCR-ABL ^{is} 1-10%* Ph+ 1-35%	BCR-ABL ^{is} >10%* Ph+ >35%		
12 mos.	BCR-ABL ^{IS} ≤0.1%* (MMR)	BCR-ABL ^{IS} 0.1-1%*	BCR-ABL ^{is} >1%* Ph+ >0%		
Then, and at any time	MMR or better	CCA/Ph- (-7, or 7q-)	Loss of CHR Loss of CCyR Loss of MMR, confirmed** Mutations CCA/Ph+		
*and/or **in 2 consecutive tests, of which one ≥1% IS: BCR-ABL on International Scale					

MERCI POUR VOTRE ATTENTION

QUESTIONS ?

